有边界和无边界的手性扭转反常和聂扬不变量

Johanna Erdmenger, Ioannis Matthaiakakis, René Meyer, Dmitri Vassilevich
{"title":"有边界和无边界的手性扭转反常和聂扬不变量","authors":"Johanna Erdmenger, Ioannis Matthaiakakis, René Meyer, Dmitri Vassilevich","doi":"arxiv-2409.06766","DOIUrl":null,"url":null,"abstract":"There exists a long-standing debate regarding the torsion contribution to the\n4d chiral anomaly of a Dirac fermion. Central to this debate is the Nieh-Yan\nanomaly, which has been considered ill-defined and a regularization artifact.\nUsing a heat-kernel approach, we examine the relationship between the Dirac\noperator index, the Nieh-Yan invariant and the torsional anomaly. We show the\nNieh-Yan invariant vanishes on spacetimes without boundaries, if the Dirac\nindex is well-defined. In the known examples of non-vanishing Nieh--Yan\ninvariant on manifolds without boundaries, the heat kernel expansion breaks\ndown, making the index ill-defined. Finally, for finite boundaries we identify\nseveral finite bulk and boundary anomaly terms, alongside bulk and boundary\nNieh-Yan terms. We construct explicit counterterms that cancel the Nieh-Yan\nterms and argue that the boundary terms give rise to a torsional anomalous Hall\neffect. Our results emphasize the importance of renormalization conditions, as\nthese can affect both the thermal and non-thermal Nieh-Yan anomaly\ncoefficients. In addition, we demonstrate that anomalous torsional transport\nmay arise even without relying on the Nieh-Yan invariant.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The chiral torsional anomaly and the Nieh-Yan invariant with and without boundaries\",\"authors\":\"Johanna Erdmenger, Ioannis Matthaiakakis, René Meyer, Dmitri Vassilevich\",\"doi\":\"arxiv-2409.06766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exists a long-standing debate regarding the torsion contribution to the\\n4d chiral anomaly of a Dirac fermion. Central to this debate is the Nieh-Yan\\nanomaly, which has been considered ill-defined and a regularization artifact.\\nUsing a heat-kernel approach, we examine the relationship between the Dirac\\noperator index, the Nieh-Yan invariant and the torsional anomaly. We show the\\nNieh-Yan invariant vanishes on spacetimes without boundaries, if the Dirac\\nindex is well-defined. In the known examples of non-vanishing Nieh--Yan\\ninvariant on manifolds without boundaries, the heat kernel expansion breaks\\ndown, making the index ill-defined. Finally, for finite boundaries we identify\\nseveral finite bulk and boundary anomaly terms, alongside bulk and boundary\\nNieh-Yan terms. We construct explicit counterterms that cancel the Nieh-Yan\\nterms and argue that the boundary terms give rise to a torsional anomalous Hall\\neffect. Our results emphasize the importance of renormalization conditions, as\\nthese can affect both the thermal and non-thermal Nieh-Yan anomaly\\ncoefficients. In addition, we demonstrate that anomalous torsional transport\\nmay arise even without relying on the Nieh-Yan invariant.\",\"PeriodicalId\":501339,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Theory\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于狄拉克费米子 4d 手性反常的扭转贡献,存在着长期的争论。利用热核方法,我们研究了狄拉克算子指数、聂-杨不变式和扭转反常之间的关系。我们证明,如果狄拉克指数定义良好,聂-扬不变式在无边界的空间上会消失。在已知的无边界流形上聂-杨不变式不消失的例子中,热核展开破裂,使得指数定义不清。最后,对于有限边界,我们确定了几种有限体和边界异常项,以及体和边界聂-杨项。我们构建了明确的反项来抵消聂-扬项,并认为边界项产生了扭转反常哈勒效应。我们的结果强调了重正化条件的重要性,因为这些条件会影响热和非热聂赫燕反常系数。此外,我们还证明,即使不依赖聂扬不变量,也可能出现反常扭转输运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The chiral torsional anomaly and the Nieh-Yan invariant with and without boundaries
There exists a long-standing debate regarding the torsion contribution to the 4d chiral anomaly of a Dirac fermion. Central to this debate is the Nieh-Yan anomaly, which has been considered ill-defined and a regularization artifact. Using a heat-kernel approach, we examine the relationship between the Dirac operator index, the Nieh-Yan invariant and the torsional anomaly. We show the Nieh-Yan invariant vanishes on spacetimes without boundaries, if the Dirac index is well-defined. In the known examples of non-vanishing Nieh--Yan invariant on manifolds without boundaries, the heat kernel expansion breaks down, making the index ill-defined. Finally, for finite boundaries we identify several finite bulk and boundary anomaly terms, alongside bulk and boundary Nieh-Yan terms. We construct explicit counterterms that cancel the Nieh-Yan terms and argue that the boundary terms give rise to a torsional anomalous Hall effect. Our results emphasize the importance of renormalization conditions, as these can affect both the thermal and non-thermal Nieh-Yan anomaly coefficients. In addition, we demonstrate that anomalous torsional transport may arise even without relying on the Nieh-Yan invariant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信