DeWinder:利用超声波传感降低单通道风噪

Kuang Yuan, Shuo Han, Swarun Kumar, Bhiksha Raj
{"title":"DeWinder:利用超声波传感降低单通道风噪","authors":"Kuang Yuan, Shuo Han, Swarun Kumar, Bhiksha Raj","doi":"arxiv-2409.06137","DOIUrl":null,"url":null,"abstract":"The quality of audio recordings in outdoor environments is often degraded by\nthe presence of wind. Mitigating the impact of wind noise on the perceptual\nquality of single-channel speech remains a significant challenge due to its\nnon-stationary characteristics. Prior work in noise suppression treats wind\nnoise as a general background noise without explicit modeling of its\ncharacteristics. In this paper, we leverage ultrasound as an auxiliary modality\nto explicitly sense the airflow and characterize the wind noise. We propose a\nmulti-modal deep-learning framework to fuse the ultrasonic Doppler features and\nspeech signals for wind noise reduction. Our results show that DeWinder can\nsignificantly improve the noise reduction capabilities of state-of-the-art\nspeech enhancement models.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeWinder: Single-Channel Wind Noise Reduction using Ultrasound Sensing\",\"authors\":\"Kuang Yuan, Shuo Han, Swarun Kumar, Bhiksha Raj\",\"doi\":\"arxiv-2409.06137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of audio recordings in outdoor environments is often degraded by\\nthe presence of wind. Mitigating the impact of wind noise on the perceptual\\nquality of single-channel speech remains a significant challenge due to its\\nnon-stationary characteristics. Prior work in noise suppression treats wind\\nnoise as a general background noise without explicit modeling of its\\ncharacteristics. In this paper, we leverage ultrasound as an auxiliary modality\\nto explicitly sense the airflow and characterize the wind noise. We propose a\\nmulti-modal deep-learning framework to fuse the ultrasonic Doppler features and\\nspeech signals for wind noise reduction. Our results show that DeWinder can\\nsignificantly improve the noise reduction capabilities of state-of-the-art\\nspeech enhancement models.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

室外环境中的录音质量往往会因为风的存在而下降。由于风噪声的非稳态特性,如何减轻风噪声对单信道语音感知质量的影响仍然是一项重大挑战。之前的噪声抑制工作将风噪视为一般背景噪声,而没有对其特性进行明确建模。在本文中,我们利用超声波作为辅助模态来明确感知气流并描述风噪声的特征。我们提出了多模态深度学习框架,以融合超声波多普勒特征和语音信号来降低风噪。我们的研究结果表明,DeWinder 可以显著提高现有语音增强模型的降噪能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeWinder: Single-Channel Wind Noise Reduction using Ultrasound Sensing
The quality of audio recordings in outdoor environments is often degraded by the presence of wind. Mitigating the impact of wind noise on the perceptual quality of single-channel speech remains a significant challenge due to its non-stationary characteristics. Prior work in noise suppression treats wind noise as a general background noise without explicit modeling of its characteristics. In this paper, we leverage ultrasound as an auxiliary modality to explicitly sense the airflow and characterize the wind noise. We propose a multi-modal deep-learning framework to fuse the ultrasonic Doppler features and speech signals for wind noise reduction. Our results show that DeWinder can significantly improve the noise reduction capabilities of state-of-the-art speech enhancement models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信