通过展开图拉普拉奇正则构建可解释的深度去噪器

Seyed Alireza Hosseini, Tam Thuc Do, Gene Cheung, Yuichi Tanaka
{"title":"通过展开图拉普拉奇正则构建可解释的深度去噪器","authors":"Seyed Alireza Hosseini, Tam Thuc Do, Gene Cheung, Yuichi Tanaka","doi":"arxiv-2409.06676","DOIUrl":null,"url":null,"abstract":"An image denoiser can be used for a wide range of restoration problems via\nthe Plug-and-Play (PnP) architecture. In this paper, we propose a general\nframework to build an interpretable graph-based deep denoiser (GDD) by\nunrolling a solution to a maximum a posteriori (MAP) problem equipped with a\ngraph Laplacian regularizer (GLR) as signal prior. Leveraging a recent theorem\nshowing that any (pseudo-)linear denoiser $\\boldsymbol \\Psi$, under mild\nconditions, can be mapped to a solution of a MAP denoising problem regularized\nusing GLR, we first initialize a graph Laplacian matrix $\\mathbf L$ via\ntruncated Taylor Series Expansion (TSE) of $\\boldsymbol \\Psi^{-1}$. Then, we\ncompute the MAP linear system solution by unrolling iterations of the conjugate\ngradient (CG) algorithm into a sequence of neural layers as a feed-forward\nnetwork -- one that is amenable to parameter tuning. The resulting GDD network\nis \"graph-interpretable\", low in parameter count, and easy to initialize thanks\nto $\\mathbf L$ derived from a known well-performing denoiser $\\boldsymbol\n\\Psi$. Experimental results show that GDD achieves competitive image denoising\nperformance compared to competitors, but employing far fewer parameters, and is\nmore robust to covariate shift.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing an Interpretable Deep Denoiser by Unrolling Graph Laplacian Regularizer\",\"authors\":\"Seyed Alireza Hosseini, Tam Thuc Do, Gene Cheung, Yuichi Tanaka\",\"doi\":\"arxiv-2409.06676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An image denoiser can be used for a wide range of restoration problems via\\nthe Plug-and-Play (PnP) architecture. In this paper, we propose a general\\nframework to build an interpretable graph-based deep denoiser (GDD) by\\nunrolling a solution to a maximum a posteriori (MAP) problem equipped with a\\ngraph Laplacian regularizer (GLR) as signal prior. Leveraging a recent theorem\\nshowing that any (pseudo-)linear denoiser $\\\\boldsymbol \\\\Psi$, under mild\\nconditions, can be mapped to a solution of a MAP denoising problem regularized\\nusing GLR, we first initialize a graph Laplacian matrix $\\\\mathbf L$ via\\ntruncated Taylor Series Expansion (TSE) of $\\\\boldsymbol \\\\Psi^{-1}$. Then, we\\ncompute the MAP linear system solution by unrolling iterations of the conjugate\\ngradient (CG) algorithm into a sequence of neural layers as a feed-forward\\nnetwork -- one that is amenable to parameter tuning. The resulting GDD network\\nis \\\"graph-interpretable\\\", low in parameter count, and easy to initialize thanks\\nto $\\\\mathbf L$ derived from a known well-performing denoiser $\\\\boldsymbol\\n\\\\Psi$. Experimental results show that GDD achieves competitive image denoising\\nperformance compared to competitors, but employing far fewer parameters, and is\\nmore robust to covariate shift.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像去噪器可通过即插即用(PnP)架构用于各种修复问题。在本文中,我们提出了一个通用框架,通过对最大后验(MAP)问题的解进行滚动,并将图谱拉普拉奇正则化器(GLR)作为信号先验来构建可解释的基于图谱的深度去噪器(GDD)。最近的一个定理表明,在温和条件下,任何(伪)线性去噪器$\boldsymbol \Psi$都可以映射为使用GLR正则化的MAP去噪问题的解,利用该定理,我们首先初始化了$\boldsymbol \Psi^{-1}$的图拉普拉斯矩阵$\mathbf L$ viatruncated Taylor Series Expansion (TSE)。然后,我们通过将共轭梯度(CG)算法的迭代展开到神经层序列中来计算 MAP 线性系统解,将其作为一个前馈网络--一个可以进行参数调整的网络。由此产生的GDD网络是 "可解释图 "的,参数数量少,并且易于初始化,这要归功于从已知性能良好的去噪器$\boldsymbol\Psi$中提取的$\mathbf L$。实验结果表明,与竞争者相比,GDD能实现具有竞争力的图像去噪性能,但使用的参数要少得多,而且对协变量偏移具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing an Interpretable Deep Denoiser by Unrolling Graph Laplacian Regularizer
An image denoiser can be used for a wide range of restoration problems via the Plug-and-Play (PnP) architecture. In this paper, we propose a general framework to build an interpretable graph-based deep denoiser (GDD) by unrolling a solution to a maximum a posteriori (MAP) problem equipped with a graph Laplacian regularizer (GLR) as signal prior. Leveraging a recent theorem showing that any (pseudo-)linear denoiser $\boldsymbol \Psi$, under mild conditions, can be mapped to a solution of a MAP denoising problem regularized using GLR, we first initialize a graph Laplacian matrix $\mathbf L$ via truncated Taylor Series Expansion (TSE) of $\boldsymbol \Psi^{-1}$. Then, we compute the MAP linear system solution by unrolling iterations of the conjugate gradient (CG) algorithm into a sequence of neural layers as a feed-forward network -- one that is amenable to parameter tuning. The resulting GDD network is "graph-interpretable", low in parameter count, and easy to initialize thanks to $\mathbf L$ derived from a known well-performing denoiser $\boldsymbol \Psi$. Experimental results show that GDD achieves competitive image denoising performance compared to competitors, but employing far fewer parameters, and is more robust to covariate shift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信