无人机走廊辅助射频供电物联网网络中的联合能量和 SINR 覆盖概率

Harris K. Armeniakos, Petros S. Bithas, Konstantinos Maliatsos, Athanasios G. Kanatas
{"title":"无人机走廊辅助射频供电物联网网络中的联合能量和 SINR 覆盖概率","authors":"Harris K. Armeniakos, Petros S. Bithas, Konstantinos Maliatsos, Athanasios G. Kanatas","doi":"arxiv-2409.07333","DOIUrl":null,"url":null,"abstract":"This letter studies the joint energy and signal-to-interference-plus-noise\n(SINR)-based coverage probability in Unmanned Aerial Vehicle (UAV)-assisted\nradio frequency (RF)-powered Internet of Things (IoT) networks. The UAVs are\nspatially distributed in an aerial corridor that is modeled as a\none-dimensional (1D) binomial point process (BPP). By accurately capturing the\nline-of-sight (LoS) probability of a UAV through large-scale fading i) an exact\nform expression for the energy coverage probability is derived, and ii) a tight\napproximation for the overall coverage performance is obtained. Among several\nkey findings, numerical results reveal the optimal number of deployed UAV-BSs\nthat maximizes the joint coverage probability, as well as the optimal length of\nthe UAV corridors when designing such UAV-assisted IoT networks.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Energy and SINR Coverage Probability in UAV Corridor-assisted RF-powered IoT Networks\",\"authors\":\"Harris K. Armeniakos, Petros S. Bithas, Konstantinos Maliatsos, Athanasios G. Kanatas\",\"doi\":\"arxiv-2409.07333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter studies the joint energy and signal-to-interference-plus-noise\\n(SINR)-based coverage probability in Unmanned Aerial Vehicle (UAV)-assisted\\nradio frequency (RF)-powered Internet of Things (IoT) networks. The UAVs are\\nspatially distributed in an aerial corridor that is modeled as a\\none-dimensional (1D) binomial point process (BPP). By accurately capturing the\\nline-of-sight (LoS) probability of a UAV through large-scale fading i) an exact\\nform expression for the energy coverage probability is derived, and ii) a tight\\napproximation for the overall coverage performance is obtained. Among several\\nkey findings, numerical results reveal the optimal number of deployed UAV-BSs\\nthat maximizes the joint coverage probability, as well as the optimal length of\\nthe UAV corridors when designing such UAV-assisted IoT networks.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了无人机(UAV)辅助射频(RF)供电的物联网(IoT)网络中基于能量和信号干扰加噪声(SINR)的联合覆盖概率。无人机在空间上分布在空中走廊中,该走廊被建模为一维(1D)二叉点过程(BPP)。通过精确捕捉无人机通过大规模衰落的视距(LoS)概率,i)得出了能量覆盖概率的精确表达式,ii)获得了整体覆盖性能的精确近似值。在几项重要发现中,数值结果揭示了在设计此类无人机辅助物联网网络时,能使联合覆盖概率最大化的最佳部署无人机-BS 数量,以及无人机走廊的最佳长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Energy and SINR Coverage Probability in UAV Corridor-assisted RF-powered IoT Networks
This letter studies the joint energy and signal-to-interference-plus-noise (SINR)-based coverage probability in Unmanned Aerial Vehicle (UAV)-assisted radio frequency (RF)-powered Internet of Things (IoT) networks. The UAVs are spatially distributed in an aerial corridor that is modeled as a one-dimensional (1D) binomial point process (BPP). By accurately capturing the line-of-sight (LoS) probability of a UAV through large-scale fading i) an exact form expression for the energy coverage probability is derived, and ii) a tight approximation for the overall coverage performance is obtained. Among several key findings, numerical results reveal the optimal number of deployed UAV-BSs that maximizes the joint coverage probability, as well as the optimal length of the UAV corridors when designing such UAV-assisted IoT networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信