{"title":"${mathcal{O}(r^N)} $ 双形式渐近对称性和重正化电荷","authors":"Matteo Romoli","doi":"arxiv-2409.08131","DOIUrl":null,"url":null,"abstract":"We investigate $ \\mathcal{O}\\left( r^N \\right) $ asymptotic symmetries for a\ntwo-form gauge field in four-dimensional Minkowski spacetime. By employing\nsymplectic renormalization, we identify $ N $ independent asymptotic charges,\nwith each charge being parametrised by an arbitrary function of the angular\nvariables. Working in Lorenz gauge, the gauge parameters require a radial\nexpansion involving logarithmic (subleading) terms to ensure nontrivial angular\ndependence at leading order. At the same time, we adopt a setup where the field\nstrength admits a power expansion, allowing logarithms in the gauge field\nexpansions within pure gauge sectors. The same setup is studied for\nelectromagnetism.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"2016 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"${\\\\mathcal{O}(r^N)} $ two-form asymptotic symmetries and renormalized charges\",\"authors\":\"Matteo Romoli\",\"doi\":\"arxiv-2409.08131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate $ \\\\mathcal{O}\\\\left( r^N \\\\right) $ asymptotic symmetries for a\\ntwo-form gauge field in four-dimensional Minkowski spacetime. By employing\\nsymplectic renormalization, we identify $ N $ independent asymptotic charges,\\nwith each charge being parametrised by an arbitrary function of the angular\\nvariables. Working in Lorenz gauge, the gauge parameters require a radial\\nexpansion involving logarithmic (subleading) terms to ensure nontrivial angular\\ndependence at leading order. At the same time, we adopt a setup where the field\\nstrength admits a power expansion, allowing logarithms in the gauge field\\nexpansions within pure gauge sectors. The same setup is studied for\\nelectromagnetism.\",\"PeriodicalId\":501339,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Theory\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了四维闵科夫斯基时空中两形式规量场的$ \mathcal{O}\left( r^N \right) $渐近对称性。通过采用交错重正化,我们确定了 $ N $ 独立渐近电荷,每个电荷由角变量的任意函数参数化。在洛伦兹规中工作时,规参数需要涉及对数(次前导)项的径向展开,以确保在前导阶时的非rivial角度依赖性。同时,我们采用了一种场强允许幂级数展开的设置,允许在纯轨距扇形内的轨距场展开中使用对数。同样的设置也用于研究电磁学。
${\mathcal{O}(r^N)} $ two-form asymptotic symmetries and renormalized charges
We investigate $ \mathcal{O}\left( r^N \right) $ asymptotic symmetries for a
two-form gauge field in four-dimensional Minkowski spacetime. By employing
symplectic renormalization, we identify $ N $ independent asymptotic charges,
with each charge being parametrised by an arbitrary function of the angular
variables. Working in Lorenz gauge, the gauge parameters require a radial
expansion involving logarithmic (subleading) terms to ensure nontrivial angular
dependence at leading order. At the same time, we adopt a setup where the field
strength admits a power expansion, allowing logarithms in the gauge field
expansions within pure gauge sectors. The same setup is studied for
electromagnetism.