关于在模糊球面上明确构建共形发电机的说明

Ruihua Fan
{"title":"关于在模糊球面上明确构建共形发电机的说明","authors":"Ruihua Fan","doi":"arxiv-2409.08257","DOIUrl":null,"url":null,"abstract":"The lowest Landau level on the sphere was recently proposed as a continuum\nregularization of the three-dimensional conformal field theories, the so-called\nfuzzy sphere regularization. In this note, we propose an explicit construction\nof the conformal generators on the fuzzy sphere in terms of the microscopic\nHamiltonian. Specifically, we construct the generators for the translation and\nspecial conformal transformation, which are used in defining the conformal\nprimary states and thus are of special interest. We apply our method to a\nconcrete example, the fuzzy sphere regularized three-dimensional Ising\nconformal field theory. We show that it can help capture all primaries with\nspin $\\ell < 4$ and scaling dimension $\\Delta < 7$. In particular, our method\ncan clearly separate the primary from other states that differ in scaling\ndimension by $1\\%$, making it hard otherwise based solely on using the\nconformal tower associated with the primaries.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on explicit construction of conformal generators on the fuzzy sphere\",\"authors\":\"Ruihua Fan\",\"doi\":\"arxiv-2409.08257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lowest Landau level on the sphere was recently proposed as a continuum\\nregularization of the three-dimensional conformal field theories, the so-called\\nfuzzy sphere regularization. In this note, we propose an explicit construction\\nof the conformal generators on the fuzzy sphere in terms of the microscopic\\nHamiltonian. Specifically, we construct the generators for the translation and\\nspecial conformal transformation, which are used in defining the conformal\\nprimary states and thus are of special interest. We apply our method to a\\nconcrete example, the fuzzy sphere regularized three-dimensional Ising\\nconformal field theory. We show that it can help capture all primaries with\\nspin $\\\\ell < 4$ and scaling dimension $\\\\Delta < 7$. In particular, our method\\ncan clearly separate the primary from other states that differ in scaling\\ndimension by $1\\\\%$, making it hard otherwise based solely on using the\\nconformal tower associated with the primaries.\",\"PeriodicalId\":501339,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Theory\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近提出了球面上的最低朗道水平,作为三维共形场论的连续正则化,即所谓的模糊球正则化。在本论文中,我们根据微观哈密顿方程提出了模糊球上共形发生器的明确构造。具体地说,我们构建了平移和特殊共形变换的发生器,它们用于定义共形原初态,因此具有特殊意义。我们将我们的方法应用于一个具体的例子,即模糊球正则化三维伊辛共形场论。我们证明,它可以帮助捕捉到所有自旋$ell < 4$、缩放维度$\Delta < 7$的原初态。特别是,我们的方法可以清晰地将原初态与其他在缩放维度上相差$1\%$的状态区分开来,这使得它很难仅仅基于使用与原初态相关的共形塔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on explicit construction of conformal generators on the fuzzy sphere
The lowest Landau level on the sphere was recently proposed as a continuum regularization of the three-dimensional conformal field theories, the so-called fuzzy sphere regularization. In this note, we propose an explicit construction of the conformal generators on the fuzzy sphere in terms of the microscopic Hamiltonian. Specifically, we construct the generators for the translation and special conformal transformation, which are used in defining the conformal primary states and thus are of special interest. We apply our method to a concrete example, the fuzzy sphere regularized three-dimensional Ising conformal field theory. We show that it can help capture all primaries with spin $\ell < 4$ and scaling dimension $\Delta < 7$. In particular, our method can clearly separate the primary from other states that differ in scaling dimension by $1\%$, making it hard otherwise based solely on using the conformal tower associated with the primaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信