利用概率状态空间模型追踪网络动态

Victor M. Tenorio, Elvin Isufi, Geert Leus, Antonio G. Marques
{"title":"利用概率状态空间模型追踪网络动态","authors":"Victor M. Tenorio, Elvin Isufi, Geert Leus, Antonio G. Marques","doi":"arxiv-2409.08238","DOIUrl":null,"url":null,"abstract":"This paper introduces a probabilistic approach for tracking the dynamics of\nunweighted and directed graphs using state-space models (SSMs). Unlike\nconventional topology inference methods that assume static graphs and generate\npoint-wise estimates, our method accounts for dynamic changes in the network\nstructure over time. We model the network at each timestep as the state of the\nSSM, and use observations to update beliefs that quantify the probability of\nthe network being in a particular state. Then, by considering the dynamics of\ntransition and observation models through the update and prediction steps,\nrespectively, the proposed method can incorporate the information of real-time\ngraph signals into the beliefs. These beliefs provide a probability\ndistribution of the network at each timestep, being able to provide both an\nestimate for the network and the uncertainty it entails. Our approach is\nevaluated through experiments with synthetic and real-world networks. The\nresults demonstrate that our method effectively estimates network states and\naccounts for the uncertainty in the data, outperforming traditional techniques\nsuch as recursive least squares.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking Network Dynamics using Probabilistic State-Space Models\",\"authors\":\"Victor M. Tenorio, Elvin Isufi, Geert Leus, Antonio G. Marques\",\"doi\":\"arxiv-2409.08238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a probabilistic approach for tracking the dynamics of\\nunweighted and directed graphs using state-space models (SSMs). Unlike\\nconventional topology inference methods that assume static graphs and generate\\npoint-wise estimates, our method accounts for dynamic changes in the network\\nstructure over time. We model the network at each timestep as the state of the\\nSSM, and use observations to update beliefs that quantify the probability of\\nthe network being in a particular state. Then, by considering the dynamics of\\ntransition and observation models through the update and prediction steps,\\nrespectively, the proposed method can incorporate the information of real-time\\ngraph signals into the beliefs. These beliefs provide a probability\\ndistribution of the network at each timestep, being able to provide both an\\nestimate for the network and the uncertainty it entails. Our approach is\\nevaluated through experiments with synthetic and real-world networks. The\\nresults demonstrate that our method effectively estimates network states and\\naccounts for the uncertainty in the data, outperforming traditional techniques\\nsuch as recursive least squares.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种使用状态空间模型(SSM)跟踪无权图和有向图动态的概率方法。传统的拓扑推断方法假定图是静态的,并生成按点估算的结果,而我们的方法则不同,它考虑了网络结构随时间的动态变化。我们将每个时间步的网络建模为 SSM 的状态,并利用观测结果更新信念,量化网络处于特定状态的概率。然后,通过分别在更新和预测步骤中考虑过渡模型和观测模型的动态,所提出的方法可以将实时图信号的信息纳入信念中。这些信念提供了网络在每个时间步的概率分布,能够同时提供网络的估计值及其带来的不确定性。通过对合成网络和真实世界网络的实验,对我们的方法进行了评估。结果表明,我们的方法能有效估计网络状态并考虑数据的不确定性,优于递归最小二乘法等传统技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking Network Dynamics using Probabilistic State-Space Models
This paper introduces a probabilistic approach for tracking the dynamics of unweighted and directed graphs using state-space models (SSMs). Unlike conventional topology inference methods that assume static graphs and generate point-wise estimates, our method accounts for dynamic changes in the network structure over time. We model the network at each timestep as the state of the SSM, and use observations to update beliefs that quantify the probability of the network being in a particular state. Then, by considering the dynamics of transition and observation models through the update and prediction steps, respectively, the proposed method can incorporate the information of real-time graph signals into the beliefs. These beliefs provide a probability distribution of the network at each timestep, being able to provide both an estimate for the network and the uncertainty it entails. Our approach is evaluated through experiments with synthetic and real-world networks. The results demonstrate that our method effectively estimates network states and accounts for the uncertainty in the data, outperforming traditional techniques such as recursive least squares.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信