通过几何和相互作用设计波哥留布夫模式:从集体边缘模到平带激励

Maryam Darvishi, Fatemeh Pouresmaeeli, Saeed H. Abedinpour
{"title":"通过几何和相互作用设计波哥留布夫模式:从集体边缘模到平带激励","authors":"Maryam Darvishi, Fatemeh Pouresmaeeli, Saeed H. Abedinpour","doi":"arxiv-2408.06125","DOIUrl":null,"url":null,"abstract":"We propose a procedure to engineer solid-state lattice models with\nsuperlattices of interaction-coupled Bose-Einstein condensates. We show that\nthe dynamical equation for the excitations of Bose-Einstein condensates at zero\ntemperature can be expressed in an eigenvalue form that resembles the\ntime-independent Schr{\\\"o}dinger equation. The eigenvalues and eigenvectors of\nthis equation correspond to the dispersions of the collective modes and the\namplitudes of the density oscillations. This alikeness opens the way for the\nsimulation of different tight-binding models with arrays of condensates. We\ndemonstrate, in particular, how we can model a one-dimensional\nSu-Schrieffer-Heeger lattice supporting topological edge modes and a\ntwo-dimensional Lieb lattice with flat-band excitations with superlattices of\nBose-Einstein condensates.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering the Bogoliubov Modes through Geometry and Interaction: From Collective Edge Modes to Flat-band Excitations\",\"authors\":\"Maryam Darvishi, Fatemeh Pouresmaeeli, Saeed H. Abedinpour\",\"doi\":\"arxiv-2408.06125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a procedure to engineer solid-state lattice models with\\nsuperlattices of interaction-coupled Bose-Einstein condensates. We show that\\nthe dynamical equation for the excitations of Bose-Einstein condensates at zero\\ntemperature can be expressed in an eigenvalue form that resembles the\\ntime-independent Schr{\\\\\\\"o}dinger equation. The eigenvalues and eigenvectors of\\nthis equation correspond to the dispersions of the collective modes and the\\namplitudes of the density oscillations. This alikeness opens the way for the\\nsimulation of different tight-binding models with arrays of condensates. We\\ndemonstrate, in particular, how we can model a one-dimensional\\nSu-Schrieffer-Heeger lattice supporting topological edge modes and a\\ntwo-dimensional Lieb lattice with flat-band excitations with superlattices of\\nBose-Einstein condensates.\",\"PeriodicalId\":501521,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Gases\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种利用相互作用耦合玻色-爱因斯坦凝聚态超级晶格来设计固态晶格模型的方法。我们证明,零温度下玻色-爱因斯坦凝聚态激发的动力学方程可以用特征值形式来表示,它类似于与时间无关的薛定谔方程。该方程的特征值和特征向量对应于集合模式的色散和密度振荡的振幅。这种异同为模拟不同的冷凝物阵列紧密束缚模型开辟了道路。我们特别展示了如何模拟支持拓扑边缘模的一维苏-施里弗-希格晶格和具有平带激元的二维李布晶格与玻色-爱因斯坦凝聚态超晶格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering the Bogoliubov Modes through Geometry and Interaction: From Collective Edge Modes to Flat-band Excitations
We propose a procedure to engineer solid-state lattice models with superlattices of interaction-coupled Bose-Einstein condensates. We show that the dynamical equation for the excitations of Bose-Einstein condensates at zero temperature can be expressed in an eigenvalue form that resembles the time-independent Schr{\"o}dinger equation. The eigenvalues and eigenvectors of this equation correspond to the dispersions of the collective modes and the amplitudes of the density oscillations. This alikeness opens the way for the simulation of different tight-binding models with arrays of condensates. We demonstrate, in particular, how we can model a one-dimensional Su-Schrieffer-Heeger lattice supporting topological edge modes and a two-dimensional Lieb lattice with flat-band excitations with superlattices of Bose-Einstein condensates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信