社交网络中无非负目标假设的预算受限利润最大化

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Suning Gong, Qingqin Nong, Yue Wang, Dingzhu Du
{"title":"社交网络中无非负目标假设的预算受限利润最大化","authors":"Suning Gong, Qingqin Nong, Yue Wang, Dingzhu Du","doi":"10.1007/s10898-024-01406-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the budget-constrained profit maximization problem with expensive seed endorsement, a derivation of the well-studied influence maximization and profit maximization in social networks. While existing research requires the non-negativity of the objective profit function, this paper considers real-world scenarios where costs may surpass revenue. Specifically, our problem can be regarded as maximizing the difference between a non-negative submodular function and a non-negative modular function under a knapsack constraint, allowing for negative differences. To tackle this challenge, we propose two algorithms. Firstly, we employ a twin greedy and enumeration technique to design a polynomial-time algorithm with a quarter weak approximation ratio, providing a balance between computational efficiency and solution quality. Then, we incorporate a threshold decreasing technique to enhance the time complexity of the first algorithm, yielding an improved computational efficiency while maintaining a reasonable level of solution accuracy. To our knowledge, this is the first paper to study the profit maximization beyond non-negativity and to propose polynomial-time algorithms with a constant bicriteria approximation ratio.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Budget-constrained profit maximization without non-negative objective assumption in social networks\",\"authors\":\"Suning Gong, Qingqin Nong, Yue Wang, Dingzhu Du\",\"doi\":\"10.1007/s10898-024-01406-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the budget-constrained profit maximization problem with expensive seed endorsement, a derivation of the well-studied influence maximization and profit maximization in social networks. While existing research requires the non-negativity of the objective profit function, this paper considers real-world scenarios where costs may surpass revenue. Specifically, our problem can be regarded as maximizing the difference between a non-negative submodular function and a non-negative modular function under a knapsack constraint, allowing for negative differences. To tackle this challenge, we propose two algorithms. Firstly, we employ a twin greedy and enumeration technique to design a polynomial-time algorithm with a quarter weak approximation ratio, providing a balance between computational efficiency and solution quality. Then, we incorporate a threshold decreasing technique to enhance the time complexity of the first algorithm, yielding an improved computational efficiency while maintaining a reasonable level of solution accuracy. To our knowledge, this is the first paper to study the profit maximization beyond non-negativity and to propose polynomial-time algorithms with a constant bicriteria approximation ratio.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01406-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01406-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了具有昂贵种子背书的预算受限利润最大化问题,这是社交网络中影响最大化和利润最大化问题的衍生。现有研究要求目标利润函数为非负,而本文则考虑了成本可能超过收入的实际情况。具体来说,我们的问题可以看作是在knapsack约束条件下,最大化非负次模态函数和非负模态函数之间的差值,允许负差值。为了应对这一挑战,我们提出了两种算法。首先,我们采用孪生贪婪和枚举技术,设计了一种具有四分之一弱逼近率的多项式时间算法,在计算效率和求解质量之间取得了平衡。然后,我们采用阈值递减技术来提高第一种算法的时间复杂度,从而在提高计算效率的同时保持合理的求解精度。据我们所知,这是第一篇研究非负性之外的利润最大化并提出具有恒定双标准近似率的多项式时间算法的论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Budget-constrained profit maximization without non-negative objective assumption in social networks

Budget-constrained profit maximization without non-negative objective assumption in social networks

In this paper, we study the budget-constrained profit maximization problem with expensive seed endorsement, a derivation of the well-studied influence maximization and profit maximization in social networks. While existing research requires the non-negativity of the objective profit function, this paper considers real-world scenarios where costs may surpass revenue. Specifically, our problem can be regarded as maximizing the difference between a non-negative submodular function and a non-negative modular function under a knapsack constraint, allowing for negative differences. To tackle this challenge, we propose two algorithms. Firstly, we employ a twin greedy and enumeration technique to design a polynomial-time algorithm with a quarter weak approximation ratio, providing a balance between computational efficiency and solution quality. Then, we incorporate a threshold decreasing technique to enhance the time complexity of the first algorithm, yielding an improved computational efficiency while maintaining a reasonable level of solution accuracy. To our knowledge, this is the first paper to study the profit maximization beyond non-negativity and to propose polynomial-time algorithms with a constant bicriteria approximation ratio.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信