{"title":"超剪切地震场景之一","authors":"A. M. Budkov, S. B. Kishkina","doi":"10.1134/S1029959924040064","DOIUrl":null,"url":null,"abstract":"<p>This paper is a part of the study on the rupture propagation and seismic wave emission during the movement along the fault, whose fracture surface in different regions is made of geomaterials with different frictional properties. The slip surface of the fault is frictionally heterogeneous. It contains weakening zones (asperities), strengthening zones (barriers), and “background” zones that are almost neutral with respect to velocity and displacement. The scenario of a seismogenic rupture is determined precisely by the presence, number, and size of such zones with different dynamics of frictional characteristics. The study deals with the mechanics of supershear earthquakes, in which the rupture propagates with an unusually high velocity exceeding the shear wave velocity of the medium. Numerical simulation results confirm the existence of two different mechanisms governing the transition of an earthquake to the supershear regime. A model of the so-called “weak” fault is considered, for which the rupture velocity continuously increases from the sub-Rayleigh velocity <i>C</i><sub>R</sub> to the shear wave velocity <i>C</i><sub>s</sub> and quickly exceeds it without any jump. This scenario is typical for faults with the measure of strength <i>S</i> under 0.8. The solved problem is not only of fundamental importance for understanding the earthquake mechanics, but also can find application in engineering seismology and the study of earthquake-induced rupture processes, because unlike an ordinary earthquake, supershear or fast ruptures cause strong shaking at a much greater distance from the source of the event (from the fault). This is confirmed by direct data on near-field ground motion obtained in recent years by research groups from different countries.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"417 - 425"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One of the Scenarios for Supershear Earthquakes\",\"authors\":\"A. M. Budkov, S. B. Kishkina\",\"doi\":\"10.1134/S1029959924040064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is a part of the study on the rupture propagation and seismic wave emission during the movement along the fault, whose fracture surface in different regions is made of geomaterials with different frictional properties. The slip surface of the fault is frictionally heterogeneous. It contains weakening zones (asperities), strengthening zones (barriers), and “background” zones that are almost neutral with respect to velocity and displacement. The scenario of a seismogenic rupture is determined precisely by the presence, number, and size of such zones with different dynamics of frictional characteristics. The study deals with the mechanics of supershear earthquakes, in which the rupture propagates with an unusually high velocity exceeding the shear wave velocity of the medium. Numerical simulation results confirm the existence of two different mechanisms governing the transition of an earthquake to the supershear regime. A model of the so-called “weak” fault is considered, for which the rupture velocity continuously increases from the sub-Rayleigh velocity <i>C</i><sub>R</sub> to the shear wave velocity <i>C</i><sub>s</sub> and quickly exceeds it without any jump. This scenario is typical for faults with the measure of strength <i>S</i> under 0.8. The solved problem is not only of fundamental importance for understanding the earthquake mechanics, but also can find application in engineering seismology and the study of earthquake-induced rupture processes, because unlike an ordinary earthquake, supershear or fast ruptures cause strong shaking at a much greater distance from the source of the event (from the fault). This is confirmed by direct data on near-field ground motion obtained in recent years by research groups from different countries.</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"27 4\",\"pages\":\"417 - 425\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1029959924040064\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924040064","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
This paper is a part of the study on the rupture propagation and seismic wave emission during the movement along the fault, whose fracture surface in different regions is made of geomaterials with different frictional properties. The slip surface of the fault is frictionally heterogeneous. It contains weakening zones (asperities), strengthening zones (barriers), and “background” zones that are almost neutral with respect to velocity and displacement. The scenario of a seismogenic rupture is determined precisely by the presence, number, and size of such zones with different dynamics of frictional characteristics. The study deals with the mechanics of supershear earthquakes, in which the rupture propagates with an unusually high velocity exceeding the shear wave velocity of the medium. Numerical simulation results confirm the existence of two different mechanisms governing the transition of an earthquake to the supershear regime. A model of the so-called “weak” fault is considered, for which the rupture velocity continuously increases from the sub-Rayleigh velocity CR to the shear wave velocity Cs and quickly exceeds it without any jump. This scenario is typical for faults with the measure of strength S under 0.8. The solved problem is not only of fundamental importance for understanding the earthquake mechanics, but also can find application in engineering seismology and the study of earthquake-induced rupture processes, because unlike an ordinary earthquake, supershear or fast ruptures cause strong shaking at a much greater distance from the source of the event (from the fault). This is confirmed by direct data on near-field ground motion obtained in recent years by research groups from different countries.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.