使用改进型 TSK 小波 2 型模糊脑情感控制器的非线性系统智能控制系统设计

IF 3.6 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Duc-Hung Pham, Chih-Min Lin, Van-Nam Giap
{"title":"使用改进型 TSK 小波 2 型模糊脑情感控制器的非线性系统智能控制系统设计","authors":"Duc-Hung Pham, Chih-Min Lin, Van-Nam Giap","doi":"10.1007/s40815-024-01751-x","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to propose a more efficient control algorithm for improving the control performance of uncertain nonlinear systems. A novel improved Takagi–Sugeno–Kang (TSK) wavelet type-2 fuzzy brain emotional learning controller (ITSKWT2FBC) is proposed. The proposed ITSKWT2FBC contains a brain emotional learning controller (BELC) combined with an improved TSK wavelet type-2 fuzzy system. By taking the advantages of BELC and the improved wavelet type-2 TSK fuzzy system, the control performance of this controller can be improved. The adaptive laws of controller parameters are derived from the defined Lyapunov function and gradient descent method. Moreover, the system stability can be guaranteed based on the Lyapunov stability theory. Finally, three nonlinear systems, a double inverted pendulum system, a Mackey–Glass time series prediction (TSP) and a four dimensional (4D) chaotic system synchronization are simulated to illustrate the effectiveness of the proposed method. The simulation results have demonstrated the effectiveness of the developed method.</p>","PeriodicalId":14056,"journal":{"name":"International Journal of Fuzzy Systems","volume":"73 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Control System Design for Nonlinear Systems Using an Improved TSK Wavelet Type-2 Fuzzy Brain Emotional Controller\",\"authors\":\"Duc-Hung Pham, Chih-Min Lin, Van-Nam Giap\",\"doi\":\"10.1007/s40815-024-01751-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper aims to propose a more efficient control algorithm for improving the control performance of uncertain nonlinear systems. A novel improved Takagi–Sugeno–Kang (TSK) wavelet type-2 fuzzy brain emotional learning controller (ITSKWT2FBC) is proposed. The proposed ITSKWT2FBC contains a brain emotional learning controller (BELC) combined with an improved TSK wavelet type-2 fuzzy system. By taking the advantages of BELC and the improved wavelet type-2 TSK fuzzy system, the control performance of this controller can be improved. The adaptive laws of controller parameters are derived from the defined Lyapunov function and gradient descent method. Moreover, the system stability can be guaranteed based on the Lyapunov stability theory. Finally, three nonlinear systems, a double inverted pendulum system, a Mackey–Glass time series prediction (TSP) and a four dimensional (4D) chaotic system synchronization are simulated to illustrate the effectiveness of the proposed method. The simulation results have demonstrated the effectiveness of the developed method.</p>\",\"PeriodicalId\":14056,\"journal\":{\"name\":\"International Journal of Fuzzy Systems\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40815-024-01751-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40815-024-01751-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在提出一种更有效的控制算法,以改善不确定非线性系统的控制性能。本文提出了一种新颖的改进型高木-菅野-康(TSK)小波 2 型模糊脑情感学习控制器(ITSKWT2FBC)。所提出的 ITSKWT2FBC 包含一个大脑情感学习控制器(BELC)和一个改进的 TSK 小波 2 型模糊系统。通过利用 BELC 和改进的小波 2 型 TSK 模糊系统的优点,该控制器的控制性能得以提高。控制器参数的自适应规律来自于定义的 Lyapunov 函数和梯度下降法。此外,基于 Lyapunov 稳定性理论,系统稳定性也能得到保证。最后,模拟了三个非线性系统、双倒立摆系统、麦基-格拉斯时间序列预测(TSP)和四维(4D)混沌系统同步,以说明所提方法的有效性。仿真结果证明了所开发方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intelligent Control System Design for Nonlinear Systems Using an Improved TSK Wavelet Type-2 Fuzzy Brain Emotional Controller

Intelligent Control System Design for Nonlinear Systems Using an Improved TSK Wavelet Type-2 Fuzzy Brain Emotional Controller

This paper aims to propose a more efficient control algorithm for improving the control performance of uncertain nonlinear systems. A novel improved Takagi–Sugeno–Kang (TSK) wavelet type-2 fuzzy brain emotional learning controller (ITSKWT2FBC) is proposed. The proposed ITSKWT2FBC contains a brain emotional learning controller (BELC) combined with an improved TSK wavelet type-2 fuzzy system. By taking the advantages of BELC and the improved wavelet type-2 TSK fuzzy system, the control performance of this controller can be improved. The adaptive laws of controller parameters are derived from the defined Lyapunov function and gradient descent method. Moreover, the system stability can be guaranteed based on the Lyapunov stability theory. Finally, three nonlinear systems, a double inverted pendulum system, a Mackey–Glass time series prediction (TSP) and a four dimensional (4D) chaotic system synchronization are simulated to illustrate the effectiveness of the proposed method. The simulation results have demonstrated the effectiveness of the developed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fuzzy Systems
International Journal of Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
7.80
自引率
9.30%
发文量
188
审稿时长
16 months
期刊介绍: The International Journal of Fuzzy Systems (IJFS) is an official journal of Taiwan Fuzzy Systems Association (TFSA) and is published semi-quarterly. IJFS will consider high quality papers that deal with the theory, design, and application of fuzzy systems, soft computing systems, grey systems, and extension theory systems ranging from hardware to software. Survey and expository submissions are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信