随机微分-差分混合系统的存在性和唯一性定理

Pub Date : 2024-09-11 DOI:10.1134/s0012266124050033
A. A. Levakov, D. A. Dolzhenkova
{"title":"随机微分-差分混合系统的存在性和唯一性定理","authors":"A. A. Levakov, D. A. Dolzhenkova","doi":"10.1134/s0012266124050033","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> A stochastic differential-difference hybrid system is a system of coupled variables whose\ndynamics is described by stochastic differential equations for some of them and difference\nequations for the others. Systems with two types of difference equations are examined: first,\na difference equation in the form of a process involving a multiplicative Wiener process, and\nsecond, a difference equation with delay. The existence and uniqueness theorems for both systems\nare proved. The basic conditions on the system’s parameters are local Lipschitz conditions and\nlinear growth order.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Uniqueness Theorems for Stochastic Differential-Difference Hybrid Systems\",\"authors\":\"A. A. Levakov, D. A. Dolzhenkova\",\"doi\":\"10.1134/s0012266124050033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> A stochastic differential-difference hybrid system is a system of coupled variables whose\\ndynamics is described by stochastic differential equations for some of them and difference\\nequations for the others. Systems with two types of difference equations are examined: first,\\na difference equation in the form of a process involving a multiplicative Wiener process, and\\nsecond, a difference equation with delay. The existence and uniqueness theorems for both systems\\nare proved. The basic conditions on the system’s parameters are local Lipschitz conditions and\\nlinear growth order.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266124050033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124050033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 随机微分-差分混合系统是一个耦合变量系统,其中一些变量的动力学由随机微分方程描述,另一些变量的动力学由差分方程描述。本文研究了具有两类差分方程的系统:第一类是涉及乘法维纳过程的差分方程,第二类是具有延迟的差分方程。证明了这两种系统的存在性和唯一性定理。系统参数的基本条件是局部 Lipschitz 条件和线性增长阶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Existence and Uniqueness Theorems for Stochastic Differential-Difference Hybrid Systems

Abstract

A stochastic differential-difference hybrid system is a system of coupled variables whose dynamics is described by stochastic differential equations for some of them and difference equations for the others. Systems with two types of difference equations are examined: first, a difference equation in the form of a process involving a multiplicative Wiener process, and second, a difference equation with delay. The existence and uniqueness theorems for both systems are proved. The basic conditions on the system’s parameters are local Lipschitz conditions and linear growth order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信