移动传感器预算扫面覆盖的常量近似算法

Wei Liang, Shaojie Tang, Zhao Zhang
{"title":"移动传感器预算扫面覆盖的常量近似算法","authors":"Wei Liang, Shaojie Tang, Zhao Zhang","doi":"arxiv-2408.12468","DOIUrl":null,"url":null,"abstract":"In this paper, we present the first constant-approximation algorithm for {\\em\nbudgeted sweep coverage problem} (BSC). The BSC involves designing routes for a\nnumber of mobile sensors (a.k.a. robots) to periodically collect information as\nmuch as possible from points of interest (PoIs). To approach this problem, we\npropose to first examine the {\\em multi-orienteering problem} (MOP). The MOP\naims to find a set of $m$ vertex-disjoint paths that cover as many vertices as\npossible while adhering to a budget constraint $B$. We develop a\nconstant-approximation algorithm for MOP and utilize it to achieve a\nconstant-approximation for BSC. Our findings open new possibilities for\noptimizing mobile sensor deployments and related combinatorial optimization\ntasks.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Constant-Approximation Algorithm for Budgeted Sweep Coverage with Mobile Sensors\",\"authors\":\"Wei Liang, Shaojie Tang, Zhao Zhang\",\"doi\":\"arxiv-2408.12468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the first constant-approximation algorithm for {\\\\em\\nbudgeted sweep coverage problem} (BSC). The BSC involves designing routes for a\\nnumber of mobile sensors (a.k.a. robots) to periodically collect information as\\nmuch as possible from points of interest (PoIs). To approach this problem, we\\npropose to first examine the {\\\\em multi-orienteering problem} (MOP). The MOP\\naims to find a set of $m$ vertex-disjoint paths that cover as many vertices as\\npossible while adhering to a budget constraint $B$. We develop a\\nconstant-approximation algorithm for MOP and utilize it to achieve a\\nconstant-approximation for BSC. Our findings open new possibilities for\\noptimizing mobile sensor deployments and related combinatorial optimization\\ntasks.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首次提出了针对{预算清扫覆盖问题}(BSC)的常量近似算法。BSC 涉及为多个移动传感器(又称机器人)设计路线,以便定期从兴趣点(PoIs)收集尽可能多的信息。为了解决这个问题,我们建议首先研究{em multi-orienteering problem} (MOP)。该问题的目标是找到一组 $m$ 的顶点相交路径,在遵守预算约束 $B$ 的前提下尽可能多地覆盖顶点。我们为 MOP 开发了一种近似算法,并利用它实现了对 BSC 的近似。我们的发现为优化移动传感器部署和相关组合优化任务提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Constant-Approximation Algorithm for Budgeted Sweep Coverage with Mobile Sensors
In this paper, we present the first constant-approximation algorithm for {\em budgeted sweep coverage problem} (BSC). The BSC involves designing routes for a number of mobile sensors (a.k.a. robots) to periodically collect information as much as possible from points of interest (PoIs). To approach this problem, we propose to first examine the {\em multi-orienteering problem} (MOP). The MOP aims to find a set of $m$ vertex-disjoint paths that cover as many vertices as possible while adhering to a budget constraint $B$. We develop a constant-approximation algorithm for MOP and utilize it to achieve a constant-approximation for BSC. Our findings open new possibilities for optimizing mobile sensor deployments and related combinatorial optimization tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信