大约以 5$ 或更长的路径覆盖顶点

Mingyang Gong, Zhi-Zhong Chen, Guohui Lin, Lusheng Wang
{"title":"大约以 5$ 或更长的路径覆盖顶点","authors":"Mingyang Gong, Zhi-Zhong Chen, Guohui Lin, Lusheng Wang","doi":"arxiv-2408.11225","DOIUrl":null,"url":null,"abstract":"This paper studies $MPC^{5+}_v$, which is to cover as many vertices as\npossible in a given graph $G=(V,E)$ by vertex-disjoint $5^+$-paths (i.e., paths\neach with at least five vertices). $MPC^{5+}_v$ is NP-hard and admits an\nexisting local-search-based approximation algorithm which achieves a ratio of\n$\\frac {19}7\\approx 2.714$ and runs in $O(|V|^6)$ time. In this paper, we\npresent a new approximation algorithm for $MPC^{5+}_v$ which achieves a ratio\nof $2.511$ and runs in $O(|V|^{2.5} |E|^2)$ time. Unlike the previous\nalgorithm, the new algorithm is based on maximum matching, maximum path-cycle\ncover, and recursion.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximately covering vertices by order-$5$ or longer paths\",\"authors\":\"Mingyang Gong, Zhi-Zhong Chen, Guohui Lin, Lusheng Wang\",\"doi\":\"arxiv-2408.11225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies $MPC^{5+}_v$, which is to cover as many vertices as\\npossible in a given graph $G=(V,E)$ by vertex-disjoint $5^+$-paths (i.e., paths\\neach with at least five vertices). $MPC^{5+}_v$ is NP-hard and admits an\\nexisting local-search-based approximation algorithm which achieves a ratio of\\n$\\\\frac {19}7\\\\approx 2.714$ and runs in $O(|V|^6)$ time. In this paper, we\\npresent a new approximation algorithm for $MPC^{5+}_v$ which achieves a ratio\\nof $2.511$ and runs in $O(|V|^{2.5} |E|^2)$ time. Unlike the previous\\nalgorithm, the new algorithm is based on maximum matching, maximum path-cycle\\ncover, and recursion.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了$MPC^{5+}_v$,即在给定图$G=(V,E)$中通过顶点相交的$5^+$路径(即每条路径至少有五个顶点)尽可能多地覆盖顶点。$MPC^{5+}_v$是NP难问题,现有的基于局部搜索的近似算法可以达到$frac {19}7\approx 2.714$的比率,运行时间为$O(|V|^6)$。本文提出了一种新的 $MPC^{5+}_v$ 近似算法,其比值达到 2.511$,运行时间为 $O(|V|^{2.5}|E|^2)$。与之前的算法不同,新算法基于最大匹配、最大路径循环覆盖和递归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximately covering vertices by order-$5$ or longer paths
This paper studies $MPC^{5+}_v$, which is to cover as many vertices as possible in a given graph $G=(V,E)$ by vertex-disjoint $5^+$-paths (i.e., paths each with at least five vertices). $MPC^{5+}_v$ is NP-hard and admits an existing local-search-based approximation algorithm which achieves a ratio of $\frac {19}7\approx 2.714$ and runs in $O(|V|^6)$ time. In this paper, we present a new approximation algorithm for $MPC^{5+}_v$ which achieves a ratio of $2.511$ and runs in $O(|V|^{2.5} |E|^2)$ time. Unlike the previous algorithm, the new algorithm is based on maximum matching, maximum path-cycle cover, and recursion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信