{"title":"N 向联合互斥并不意味着命题的任何成对互斥","authors":"Roy S. Freedman","doi":"arxiv-2409.03784","DOIUrl":null,"url":null,"abstract":"Given a set of N propositions, if any pair is mutual exclusive, then the set\nof all propositions are N-way jointly mutually exclusive. This paper provides a\nnew general counterexample to the converse. We prove that for any set of N\npropositional variables, there exist N propositions such that their N-way\nconjunction is zero, yet all k-way component conjunctions are non-zero. The\nconsequence is that N-way joint mutual exclusion does not imply any pairwise\nmutual exclusion. A similar result is true for sets since propositional\ncalculus and set theory are models for two-element Boolean algebra.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-Way Joint Mutual Exclusion Does Not Imply Any Pairwise Mutual Exclusion for Propositions\",\"authors\":\"Roy S. Freedman\",\"doi\":\"arxiv-2409.03784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set of N propositions, if any pair is mutual exclusive, then the set\\nof all propositions are N-way jointly mutually exclusive. This paper provides a\\nnew general counterexample to the converse. We prove that for any set of N\\npropositional variables, there exist N propositions such that their N-way\\nconjunction is zero, yet all k-way component conjunctions are non-zero. The\\nconsequence is that N-way joint mutual exclusion does not imply any pairwise\\nmutual exclusion. A similar result is true for sets since propositional\\ncalculus and set theory are models for two-element Boolean algebra.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
给定一个由 N 个命题组成的集合,如果任何一对命题是互斥的,那么所有命题的集合就是 N 路共同互斥的。本文为反义词提供了一个新的一般性反例。我们证明,对于任何由 N 个命题变量组成的集合,都存在 N 个命题,它们的 N 向连词为零,但所有 k 向分量连词都不为零。其结果是,N 向联合互斥并不意味着任何成对互斥。类似的结果也适用于集合,因为命题微积分和集合论是两元素布尔代数的模型。
N-Way Joint Mutual Exclusion Does Not Imply Any Pairwise Mutual Exclusion for Propositions
Given a set of N propositions, if any pair is mutual exclusive, then the set
of all propositions are N-way jointly mutually exclusive. This paper provides a
new general counterexample to the converse. We prove that for any set of N
propositional variables, there exist N propositions such that their N-way
conjunction is zero, yet all k-way component conjunctions are non-zero. The
consequence is that N-way joint mutual exclusion does not imply any pairwise
mutual exclusion. A similar result is true for sets since propositional
calculus and set theory are models for two-element Boolean algebra.