平面 st 图的向上点集嵌入

Carlos Alegria, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, Maurizio Patrignani
{"title":"平面 st 图的向上点集嵌入","authors":"Carlos Alegria, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, Maurizio Patrignani","doi":"arxiv-2408.17369","DOIUrl":null,"url":null,"abstract":"We study upward pointset embeddings (UPSEs) of planar $st$-graphs. Let $G$ be\na planar $st$-graph and let $S \\subset \\mathbb{R}^2$ be a pointset with $|S|=\n|V(G)|$. An UPSE of $G$ on $S$ is an upward planar straight-line drawing of $G$\nthat maps the vertices of $G$ to the points of $S$. We consider both the\nproblem of testing the existence of an UPSE of $G$ on $S$ (UPSE Testing) and\nthe problem of enumerating all UPSEs of $G$ on $S$. We prove that UPSE Testing\nis NP-complete even for $st$-graphs that consist of a set of directed\n$st$-paths sharing only $s$ and $t$. On the other hand, for $n$-vertex planar\n$st$-graphs whose maximum $st$-cutset has size $k$, we prove that it is\npossible to solve UPSE Testing in $O(n^{4k})$ time with $O(n^{3k})$ space, and\nto enumerate all UPSEs of $G$ on $S$ with $O(n)$ worst-case delay, using $O(k\nn^{4k} \\log n)$ space, after $O(k n^{4k} \\log n)$ set-up time. Moreover, for an\n$n$-vertex $st$-graph whose underlying graph is a cycle, we provide a necessary\nand sufficient condition for the existence of an UPSE on a given poinset, which\ncan be tested in $O(n \\log n)$ time. Related to this result, we give an\nalgorithm that, for a set $S$ of $n$ points, enumerates all the non-crossing\nmonotone Hamiltonian cycles on $S$ with $O(n)$ worst-case delay, using $O(n^2)$\nspace, after $O(n^2)$ set-up time.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upward Pointset Embeddings of Planar st-Graphs\",\"authors\":\"Carlos Alegria, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, Maurizio Patrignani\",\"doi\":\"arxiv-2408.17369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study upward pointset embeddings (UPSEs) of planar $st$-graphs. Let $G$ be\\na planar $st$-graph and let $S \\\\subset \\\\mathbb{R}^2$ be a pointset with $|S|=\\n|V(G)|$. An UPSE of $G$ on $S$ is an upward planar straight-line drawing of $G$\\nthat maps the vertices of $G$ to the points of $S$. We consider both the\\nproblem of testing the existence of an UPSE of $G$ on $S$ (UPSE Testing) and\\nthe problem of enumerating all UPSEs of $G$ on $S$. We prove that UPSE Testing\\nis NP-complete even for $st$-graphs that consist of a set of directed\\n$st$-paths sharing only $s$ and $t$. On the other hand, for $n$-vertex planar\\n$st$-graphs whose maximum $st$-cutset has size $k$, we prove that it is\\npossible to solve UPSE Testing in $O(n^{4k})$ time with $O(n^{3k})$ space, and\\nto enumerate all UPSEs of $G$ on $S$ with $O(n)$ worst-case delay, using $O(k\\nn^{4k} \\\\log n)$ space, after $O(k n^{4k} \\\\log n)$ set-up time. Moreover, for an\\n$n$-vertex $st$-graph whose underlying graph is a cycle, we provide a necessary\\nand sufficient condition for the existence of an UPSE on a given poinset, which\\ncan be tested in $O(n \\\\log n)$ time. Related to this result, we give an\\nalgorithm that, for a set $S$ of $n$ points, enumerates all the non-crossing\\nmonotone Hamiltonian cycles on $S$ with $O(n)$ worst-case delay, using $O(n^2)$\\nspace, after $O(n^2)$ set-up time.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究平面$st$图的向上点集嵌入(UPSE)。假设$G$是一个平面$st$图,并假设$S \subset \mathbb{R}^2$是一个点集,其中$|S|=|V(G)|$。$G$在$S$上的UPSE是$G$的向上平面直线图,它将$G$的顶点映射到$S$的点上。我们既要考虑测试 $S$ 上是否存在 $G$ 的 UPSE 问题(UPSE 测试),又要考虑枚举 $S$ 上所有 $G$ 的 UPSE 问题。我们证明,即使对于由一组仅共享 $s$ 和 $t$ 的有向 $st$ 路径组成的 $st$ 图,UPSE 检验也是 NP-完全的。另一方面,对于最大$st$切集大小为$k$的$n$顶点平面$st$图,我们证明可以在$O(n^{4k})$时间和$O(n^{3k})$空间内求解 UPSE Testing、的空间,经过 $O(k n^{4k} \log n)$ 的设置时间,以 $O(n)$ 最坏情况延迟枚举出 $S$ 上 $G$ 的所有 UPSE。此外,对于底层图是一个循环的 n 个顶点的 st 图,我们提供了在给定顶点上存在 UPSE 的必要条件和充分条件,可以在 $O(n \log n)$ 时间内进行测试。与此结果相关的是,我们给出了一种分析方法,对于由 $n$ 点组成的集合 $S$,在 $O(n^2)$ 设置时间之后,使用 $O(n^2)$ 空间,以 $O(n)$ 最坏情况延迟枚举出 $S$ 上所有非交叉单调哈密顿循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upward Pointset Embeddings of Planar st-Graphs
We study upward pointset embeddings (UPSEs) of planar $st$-graphs. Let $G$ be a planar $st$-graph and let $S \subset \mathbb{R}^2$ be a pointset with $|S|= |V(G)|$. An UPSE of $G$ on $S$ is an upward planar straight-line drawing of $G$ that maps the vertices of $G$ to the points of $S$. We consider both the problem of testing the existence of an UPSE of $G$ on $S$ (UPSE Testing) and the problem of enumerating all UPSEs of $G$ on $S$. We prove that UPSE Testing is NP-complete even for $st$-graphs that consist of a set of directed $st$-paths sharing only $s$ and $t$. On the other hand, for $n$-vertex planar $st$-graphs whose maximum $st$-cutset has size $k$, we prove that it is possible to solve UPSE Testing in $O(n^{4k})$ time with $O(n^{3k})$ space, and to enumerate all UPSEs of $G$ on $S$ with $O(n)$ worst-case delay, using $O(k n^{4k} \log n)$ space, after $O(k n^{4k} \log n)$ set-up time. Moreover, for an $n$-vertex $st$-graph whose underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an UPSE on a given poinset, which can be tested in $O(n \log n)$ time. Related to this result, we give an algorithm that, for a set $S$ of $n$ points, enumerates all the non-crossing monotone Hamiltonian cycles on $S$ with $O(n)$ worst-case delay, using $O(n^2)$ space, after $O(n^2)$ set-up time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信