向上的代价

Patrizio Angelini, Therese Biedl, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Seok-Hee Hong, Giuseppe Liotta, Maurizio Patrignani, Sergey Pupyrev, Ignaz Rutter, Alexander Wolff
{"title":"向上的代价","authors":"Patrizio Angelini, Therese Biedl, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Seok-Hee Hong, Giuseppe Liotta, Maurizio Patrignani, Sergey Pupyrev, Ignaz Rutter, Alexander Wolff","doi":"arxiv-2409.01475","DOIUrl":null,"url":null,"abstract":"Not every directed acyclic graph (DAG) whose underlying undirected graph is\nplanar admits an upward planar drawing. We are interested in pushing the notion\nof upward drawings beyond planarity by considering upward $k$-planar drawings\nof DAGs in which the edges are monotonically increasing in a common direction\nand every edge is crossed at most $k$ times for some integer $k \\ge 1$. We show\nthat the number of crossings per edge in a monotone drawing is in general\nunbounded for the class of bipartite outerplanar, cubic, or bounded pathwidth\nDAGs. However, it is at most two for outerpaths and it is at most quadratic in\nthe bandwidth in general. From the computational point of view, we prove that\nupward-$k$-planarity testing is NP-complete already for $k =1$ and even for\nrestricted instances for which upward planarity testing is polynomial. On the\npositive side, we can decide in linear time whether a single-source DAG admits\nan upward $1$-planar drawing in which all vertices are incident to the outer\nface.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Price of Upwardness\",\"authors\":\"Patrizio Angelini, Therese Biedl, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Seok-Hee Hong, Giuseppe Liotta, Maurizio Patrignani, Sergey Pupyrev, Ignaz Rutter, Alexander Wolff\",\"doi\":\"arxiv-2409.01475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Not every directed acyclic graph (DAG) whose underlying undirected graph is\\nplanar admits an upward planar drawing. We are interested in pushing the notion\\nof upward drawings beyond planarity by considering upward $k$-planar drawings\\nof DAGs in which the edges are monotonically increasing in a common direction\\nand every edge is crossed at most $k$ times for some integer $k \\\\ge 1$. We show\\nthat the number of crossings per edge in a monotone drawing is in general\\nunbounded for the class of bipartite outerplanar, cubic, or bounded pathwidth\\nDAGs. However, it is at most two for outerpaths and it is at most quadratic in\\nthe bandwidth in general. From the computational point of view, we prove that\\nupward-$k$-planarity testing is NP-complete already for $k =1$ and even for\\nrestricted instances for which upward planarity testing is polynomial. On the\\npositive side, we can decide in linear time whether a single-source DAG admits\\nan upward $1$-planar drawing in which all vertices are incident to the outer\\nface.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

并不是每个底层无向图是平面的有向无环图(DAG)都可以向上绘制平面图。我们有兴趣通过考虑 DAG 的向上 $k$ 平面图来推动向上图的概念超越平面性,在这些向上图中,边在一个共同的方向上单调递增,并且对于某个整数 $k\ge 1$,每条边最多交叉 $k$ 次。我们证明,对于双方外平面、立方或有界路径宽度 DAG 类,单调绘图中每条边的交叉次数一般是无界的。但是,对于外路径来说,交叉次数最多为两个,而且一般来说,交叉次数最多为带宽的二次方。从计算的角度来看,我们证明了向上的 $k$ 平面性测试在 $k =1$ 时就已经是 NP-完备的,甚至对于受限的实例,向上的平面性测试也是多项式的。从正面来看,我们可以在线性时间内判定一个单源 DAG 是否允许向上$1$-平面图,在该平面图中,所有顶点都入射到外表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Price of Upwardness
Not every directed acyclic graph (DAG) whose underlying undirected graph is planar admits an upward planar drawing. We are interested in pushing the notion of upward drawings beyond planarity by considering upward $k$-planar drawings of DAGs in which the edges are monotonically increasing in a common direction and every edge is crossed at most $k$ times for some integer $k \ge 1$. We show that the number of crossings per edge in a monotone drawing is in general unbounded for the class of bipartite outerplanar, cubic, or bounded pathwidth DAGs. However, it is at most two for outerpaths and it is at most quadratic in the bandwidth in general. From the computational point of view, we prove that upward-$k$-planarity testing is NP-complete already for $k =1$ and even for restricted instances for which upward planarity testing is polynomial. On the positive side, we can decide in linear time whether a single-source DAG admits an upward $1$-planar drawing in which all vertices are incident to the outer face.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信