水平平面性比我们想象的更困难

Simon D. Fink, Matthias Pfretzschner, Ignaz Rutter, Peter Stumpf
{"title":"水平平面性比我们想象的更困难","authors":"Simon D. Fink, Matthias Pfretzschner, Ignaz Rutter, Peter Stumpf","doi":"arxiv-2409.01727","DOIUrl":null,"url":null,"abstract":"We consider three simple quadratic time algorithms for the problem Level\nPlanarity and give a level-planar instance that they either falsely report as\nnegative or for which they output a drawing that is not level planar.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Level Planarity Is More Difficult Than We Thought\",\"authors\":\"Simon D. Fink, Matthias Pfretzschner, Ignaz Rutter, Peter Stumpf\",\"doi\":\"arxiv-2409.01727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider three simple quadratic time algorithms for the problem Level\\nPlanarity and give a level-planar instance that they either falsely report as\\nnegative or for which they output a drawing that is not level planar.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了水平平面性问题的三种简单二次方时间算法,并给出了一个水平平面性实例,这些算法要么误报为负值,要么输出的图纸不是水平平面性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Level Planarity Is More Difficult Than We Thought
We consider three simple quadratic time algorithms for the problem Level Planarity and give a level-planar instance that they either falsely report as negative or for which they output a drawing that is not level planar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信