具有迪里夏特条件的分数 p-拉普拉奇的最优可解性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Antonio Iannizzotto, Dimitri Mugnai
{"title":"具有迪里夏特条件的分数 p-拉普拉奇的最优可解性","authors":"Antonio Iannizzotto, Dimitri Mugnai","doi":"10.1007/s13540-024-00341-w","DOIUrl":null,"url":null,"abstract":"<p>We study a nonlinear, nonlocal Dirichlet problem driven by the fractional <i>p</i>-Laplacian, involving a <span>\\((p-1)\\)</span>-sublinear reaction. By means of a weak comparison principle we prove uniqueness of the solution. Also, comparing the problem to ’asymptotic’ weighted eigenvalue problems for the same operator, we prove a necessary and sufficient condition for the existence of a solution. Our work extends classical results due to Brezis-Oswald [7] and Diaz-Saa [11] to the nonlinear nonlocal framework.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal solvability for the fractional p-Laplacian with Dirichlet conditions\",\"authors\":\"Antonio Iannizzotto, Dimitri Mugnai\",\"doi\":\"10.1007/s13540-024-00341-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a nonlinear, nonlocal Dirichlet problem driven by the fractional <i>p</i>-Laplacian, involving a <span>\\\\((p-1)\\\\)</span>-sublinear reaction. By means of a weak comparison principle we prove uniqueness of the solution. Also, comparing the problem to ’asymptotic’ weighted eigenvalue problems for the same operator, we prove a necessary and sufficient condition for the existence of a solution. Our work extends classical results due to Brezis-Oswald [7] and Diaz-Saa [11] to the nonlinear nonlocal framework.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00341-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00341-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个由分数 p-Laplacian 驱动的非线性、非局部 Dirichlet 问题,其中涉及一个 ((p-1)\)次线性反应。通过弱比较原理,我们证明了解的唯一性。同时,通过将该问题与同一算子的 "渐近 "加权特征值问题进行比较,我们证明了解存在的必要条件和充分条件。我们的研究将 Brezis-Oswald [7] 和 Diaz-Saa [11] 的经典结果扩展到了非线性非局部框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal solvability for the fractional p-Laplacian with Dirichlet conditions

We study a nonlinear, nonlocal Dirichlet problem driven by the fractional p-Laplacian, involving a \((p-1)\)-sublinear reaction. By means of a weak comparison principle we prove uniqueness of the solution. Also, comparing the problem to ’asymptotic’ weighted eigenvalue problems for the same operator, we prove a necessary and sufficient condition for the existence of a solution. Our work extends classical results due to Brezis-Oswald [7] and Diaz-Saa [11] to the nonlinear nonlocal framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信