低维梯度有助于分布外检测

Yingwen Wu;Tao Li;Xinwen Cheng;Jie Yang;Xiaolin Huang
{"title":"低维梯度有助于分布外检测","authors":"Yingwen Wu;Tao Li;Xinwen Cheng;Jie Yang;Xiaolin Huang","doi":"10.1109/TPAMI.2024.3459988","DOIUrl":null,"url":null,"abstract":"Detecting out-of-distribution (OOD) samples is essential for ensuring the reliability of deep neural networks (DNNs) in real-world scenarios. While previous research has predominantly investigated the disparity between in-distribution (ID) and OOD data through forward information analysis, the discrepancy in parameter gradients during the backward process of DNNs has received insufficient attention. Existing studies on gradient disparities mainly focus on the utilization of gradient norms, neglecting the wealth of information embedded in gradient directions. To bridge this gap, in this paper, we conduct a comprehensive investigation into leveraging the entirety of gradient information for OOD detection. The primary challenge arises from the high dimensionality of gradients due to the large number of network parameters. To solve this problem, we propose performing linear dimension reduction on the gradient using a designated subspace that comprises principal components. This innovative technique enables us to obtain a low-dimensional representation of the gradient with minimal information loss. Subsequently, by integrating the reduced gradient with various existing detection score functions, our approach demonstrates superior performance across a wide range of detection tasks. For instance, on the ImageNet benchmark with ResNet50 model, our method achieves an average reduction of 11.15\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n in the false positive rate at 95\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n recall (FPR95) compared to the current state-of-the-art approach.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Dimensional Gradient Helps Out-of-Distribution Detection\",\"authors\":\"Yingwen Wu;Tao Li;Xinwen Cheng;Jie Yang;Xiaolin Huang\",\"doi\":\"10.1109/TPAMI.2024.3459988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting out-of-distribution (OOD) samples is essential for ensuring the reliability of deep neural networks (DNNs) in real-world scenarios. While previous research has predominantly investigated the disparity between in-distribution (ID) and OOD data through forward information analysis, the discrepancy in parameter gradients during the backward process of DNNs has received insufficient attention. Existing studies on gradient disparities mainly focus on the utilization of gradient norms, neglecting the wealth of information embedded in gradient directions. To bridge this gap, in this paper, we conduct a comprehensive investigation into leveraging the entirety of gradient information for OOD detection. The primary challenge arises from the high dimensionality of gradients due to the large number of network parameters. To solve this problem, we propose performing linear dimension reduction on the gradient using a designated subspace that comprises principal components. This innovative technique enables us to obtain a low-dimensional representation of the gradient with minimal information loss. Subsequently, by integrating the reduced gradient with various existing detection score functions, our approach demonstrates superior performance across a wide range of detection tasks. For instance, on the ImageNet benchmark with ResNet50 model, our method achieves an average reduction of 11.15\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n in the false positive rate at 95\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n recall (FPR95) compared to the current state-of-the-art approach.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679599/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10679599/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要确保深度神经网络(DNN)在真实世界场景中的可靠性,检测分布外(OOD)样本至关重要。以往的研究主要通过前向信息分析来研究分布内(ID)和分布外(OOD)数据之间的差异,而 DNNs 后向过程中参数梯度的差异却没有得到足够的重视。现有的梯度差异研究主要关注梯度规范的利用,而忽视了梯度方向所蕴含的丰富信息。为了弥补这一不足,我们在本文中对如何利用梯度信息的全部内容进行 OOD 检测进行了全面研究。主要挑战来自于大量网络参数导致的梯度高维度。为解决这一问题,我们建议使用由主成分组成的指定子空间对梯度进行线性降维。这一创新技术使我们能够以最小的信息损失获得梯度的低维表示。随后,通过将降低的梯度与现有的各种检测评分函数进行整合,我们的方法在各种检测任务中都表现出了卓越的性能。例如,在使用 ResNet50 模型的 ImageNet 基准上,与当前最先进的方法相比,我们的方法在 95% 的召回率(FPR95)下平均降低了 11.15% 的误报率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Dimensional Gradient Helps Out-of-Distribution Detection
Detecting out-of-distribution (OOD) samples is essential for ensuring the reliability of deep neural networks (DNNs) in real-world scenarios. While previous research has predominantly investigated the disparity between in-distribution (ID) and OOD data through forward information analysis, the discrepancy in parameter gradients during the backward process of DNNs has received insufficient attention. Existing studies on gradient disparities mainly focus on the utilization of gradient norms, neglecting the wealth of information embedded in gradient directions. To bridge this gap, in this paper, we conduct a comprehensive investigation into leveraging the entirety of gradient information for OOD detection. The primary challenge arises from the high dimensionality of gradients due to the large number of network parameters. To solve this problem, we propose performing linear dimension reduction on the gradient using a designated subspace that comprises principal components. This innovative technique enables us to obtain a low-dimensional representation of the gradient with minimal information loss. Subsequently, by integrating the reduced gradient with various existing detection score functions, our approach demonstrates superior performance across a wide range of detection tasks. For instance, on the ImageNet benchmark with ResNet50 model, our method achieves an average reduction of 11.15 $\%$ in the false positive rate at 95 $\%$ recall (FPR95) compared to the current state-of-the-art approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信