UniParser:利用统一相关表示学习进行多人解析

Jiaming Chu;Lei Jin;Yinglei Teng;Jianshu Li;Yunchao Wei;Zheng Wang;Junliang Xing;Shuicheng Yan;Jian Zhao
{"title":"UniParser:利用统一相关表示学习进行多人解析","authors":"Jiaming Chu;Lei Jin;Yinglei Teng;Jianshu Li;Yunchao Wei;Zheng Wang;Junliang Xing;Shuicheng Yan;Jian Zhao","doi":"10.1109/TIP.2024.3456004","DOIUrl":null,"url":null,"abstract":"Multi-human parsing is an image segmentation task necessitating both instance-level and fine-grained category-level information. However, prior research has typically processed these two types of information through distinct branch types and output formats, leading to inefficient and redundant frameworks. This paper introduces UniParser, which integrates instance-level and category-level representations in three key aspects: 1) we propose a unified correlation representation learning approach, allowing our network to learn instance and category features within the cosine space; 2) we unify the form of outputs of each modules as pixel-level results while supervising instance and category features using a homogeneous label accompanied by an auxiliary loss; and 3) we design a joint optimization procedure to fuse instance and category representations. By unifying instance-level and category-level output, UniParser circumvents manually designed post-processing techniques and surpasses state-of-the-art methods, achieving 49.3% AP on MHPv2.0 and 60.4% AP on CIHP. We have released our source code, pretrained models, and demos to facilitate future studies on \n<uri>https://github.com/cjm-sfw/Uniparser</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5159-5171"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UniParser: Multi-Human Parsing With Unified Correlation Representation Learning\",\"authors\":\"Jiaming Chu;Lei Jin;Yinglei Teng;Jianshu Li;Yunchao Wei;Zheng Wang;Junliang Xing;Shuicheng Yan;Jian Zhao\",\"doi\":\"10.1109/TIP.2024.3456004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-human parsing is an image segmentation task necessitating both instance-level and fine-grained category-level information. However, prior research has typically processed these two types of information through distinct branch types and output formats, leading to inefficient and redundant frameworks. This paper introduces UniParser, which integrates instance-level and category-level representations in three key aspects: 1) we propose a unified correlation representation learning approach, allowing our network to learn instance and category features within the cosine space; 2) we unify the form of outputs of each modules as pixel-level results while supervising instance and category features using a homogeneous label accompanied by an auxiliary loss; and 3) we design a joint optimization procedure to fuse instance and category representations. By unifying instance-level and category-level output, UniParser circumvents manually designed post-processing techniques and surpasses state-of-the-art methods, achieving 49.3% AP on MHPv2.0 and 60.4% AP on CIHP. We have released our source code, pretrained models, and demos to facilitate future studies on \\n<uri>https://github.com/cjm-sfw/Uniparser</uri>\\n.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"5159-5171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679656/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10679656/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多人解析是一项图像分割任务,需要实例级和细粒度类别级信息。然而,之前的研究通常通过不同的分支类型和输出格式来处理这两类信息,导致框架效率低下且冗余。本文介绍了 UniParser,它从三个关键方面整合了实例级和类别级表征:1)我们提出了一种统一的相关表示学习方法,允许我们的网络在余弦空间内学习实例和类别特征;2)我们将各模块的输出形式统一为像素级结果,同时使用同质标签和辅助损失来监督实例和类别特征;3)我们设计了一种联合优化程序来融合实例和类别表示。通过统一实例级和类别级输出,UniParser 避开了人工设计的后处理技术,并超越了最先进的方法,在 MHPv2.0 上实现了 49.3% 的 AP,在 CIHP 上实现了 60.4% 的 AP。我们已经发布了源代码、预训练模型和演示,以促进未来在 https://github.com/cjm-sfw/Uniparser 上的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UniParser: Multi-Human Parsing With Unified Correlation Representation Learning
Multi-human parsing is an image segmentation task necessitating both instance-level and fine-grained category-level information. However, prior research has typically processed these two types of information through distinct branch types and output formats, leading to inefficient and redundant frameworks. This paper introduces UniParser, which integrates instance-level and category-level representations in three key aspects: 1) we propose a unified correlation representation learning approach, allowing our network to learn instance and category features within the cosine space; 2) we unify the form of outputs of each modules as pixel-level results while supervising instance and category features using a homogeneous label accompanied by an auxiliary loss; and 3) we design a joint optimization procedure to fuse instance and category representations. By unifying instance-level and category-level output, UniParser circumvents manually designed post-processing techniques and surpasses state-of-the-art methods, achieving 49.3% AP on MHPv2.0 and 60.4% AP on CIHP. We have released our source code, pretrained models, and demos to facilitate future studies on https://github.com/cjm-sfw/Uniparser .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信