{"title":"细胞色素 c 氧化酶的结构和功能机制","authors":"Denis L. Rousseau, Izumi Ishigami, Syun-Ru Yeh","doi":"10.1016/j.jinorgbio.2024.112730","DOIUrl":null,"url":null,"abstract":"<div><p>Cytochrome <em>c</em> oxidase (C<em>c</em>O) is the terminal enzyme in the electron transfer chain in mitochondria. It catalyzes the four-electron reduction of O<sub>2</sub> to H<sub>2</sub>O and harnesses the redox energy to drive unidirectional proton translocation against a proton electrochemical gradient. A great deal of research has been conducted to comprehend the molecular properties of C<em>c</em>O. However, the mechanism by which the oxygen reduction reaction is coupled to proton translocation remains poorly understood. Here, we review the chemical properties of a variety of key oxygen intermediates of bovine C<em>c</em>O (bC<em>c</em>O) revealed by time-resolved resonance Raman spectroscopy and the structural features of the enzyme uncovered by serial femtosecond crystallography, an innovative technique that allows structural determination at room temperature without radiation damage. The implications of these data on the proton translocation mechanism are discussed.</p></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"262 ","pages":"Article 112730"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and functional mechanisms of cytochrome c oxidase\",\"authors\":\"Denis L. Rousseau, Izumi Ishigami, Syun-Ru Yeh\",\"doi\":\"10.1016/j.jinorgbio.2024.112730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cytochrome <em>c</em> oxidase (C<em>c</em>O) is the terminal enzyme in the electron transfer chain in mitochondria. It catalyzes the four-electron reduction of O<sub>2</sub> to H<sub>2</sub>O and harnesses the redox energy to drive unidirectional proton translocation against a proton electrochemical gradient. A great deal of research has been conducted to comprehend the molecular properties of C<em>c</em>O. However, the mechanism by which the oxygen reduction reaction is coupled to proton translocation remains poorly understood. Here, we review the chemical properties of a variety of key oxygen intermediates of bovine C<em>c</em>O (bC<em>c</em>O) revealed by time-resolved resonance Raman spectroscopy and the structural features of the enzyme uncovered by serial femtosecond crystallography, an innovative technique that allows structural determination at room temperature without radiation damage. The implications of these data on the proton translocation mechanism are discussed.</p></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"262 \",\"pages\":\"Article 112730\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016201342400254X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016201342400254X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
细胞色素 c 氧化酶(CcO)是线粒体中电子传递链的终端酶。它催化 O2 的四电子还原为 H2O,并利用氧化还原能推动质子在质子电化学梯度上的单向转移。为了解 CcO 的分子特性,人们进行了大量研究。然而,人们对氧还原反应与质子转位的耦合机制仍然知之甚少。在此,我们回顾了时间分辨共振拉曼光谱所揭示的牛 CcO(bCcO)的各种关键氧中间体的化学特性,以及串行飞秒晶体学所揭示的酶的结构特征,这种创新技术可在室温下进行结构测定而不会造成辐射损伤。本文讨论了这些数据对质子转位机制的影响。
Structural and functional mechanisms of cytochrome c oxidase
Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in mitochondria. It catalyzes the four-electron reduction of O2 to H2O and harnesses the redox energy to drive unidirectional proton translocation against a proton electrochemical gradient. A great deal of research has been conducted to comprehend the molecular properties of CcO. However, the mechanism by which the oxygen reduction reaction is coupled to proton translocation remains poorly understood. Here, we review the chemical properties of a variety of key oxygen intermediates of bovine CcO (bCcO) revealed by time-resolved resonance Raman spectroscopy and the structural features of the enzyme uncovered by serial femtosecond crystallography, an innovative technique that allows structural determination at room temperature without radiation damage. The implications of these data on the proton translocation mechanism are discussed.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.