钴/镍比对铸态铬-镍-钴-铝-硅-钛-铜高熵合金微观结构和机械性能的影响

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zijian Wang, Guangzeng Zhang, Shuai Hu, Yufan Zang, Shaojie Wu, Yongfu Cai, Tan Wang, Fushan Li, Ran Wei, Shaokang Guan, Chen Chen
{"title":"钴/镍比对铸态铬-镍-钴-铝-硅-钛-铜高熵合金微观结构和机械性能的影响","authors":"Zijian Wang,&nbsp;Guangzeng Zhang,&nbsp;Shuai Hu,&nbsp;Yufan Zang,&nbsp;Shaojie Wu,&nbsp;Yongfu Cai,&nbsp;Tan Wang,&nbsp;Fushan Li,&nbsp;Ran Wei,&nbsp;Shaokang Guan,&nbsp;Chen Chen","doi":"10.1016/j.intermet.2024.108490","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, partial replacement of Ni for Co was adopted in FCC + BCC heterostructure as-cast CrFeNi<sub>1-x</sub>Co<sub>x</sub>Al<sub>0.28</sub>Si<sub>0.09</sub>Ti<sub>0.02</sub>Cu<sub>0.01</sub> high entropy alloys (HEAs), and the modification in microstructure and mechanical properties of these alloys with the increase in the Co/Ni ratio has been systematically investigated. It was observed that all these designed HEAs consist of FCC sideplates with a surrounding BCC phase, as well as well-dispersed B2 phase in as-cast state. Additionally, higher Co/Ni ratio leads to a larger proportion of BCC phase, which has following impacts on the mechanical properties of this series of HEAs: when such ratio begins to increase, it has obvious enhancement in strength and gradual decrease in plasticity; when it reaches 0.15/0.85, it has high strength of ∼1.4 GPa and good plasticity of &gt;10 %. While further enhancing Co/Ni ratio leads to significant connection of BCC phase, resulting in drastic increase in brittleness. The detailed mechanism for such phenomenon has been discussed in detail. This study provides a novel route on improving the comprehensive mechanical properties of this series of as-cast HEAs.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108490"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Co/Ni ratio on microstructure and mechanical properties of as-cast Cr-Fe-Ni-Co-Al-Si-Ti-Cu high entropy alloys\",\"authors\":\"Zijian Wang,&nbsp;Guangzeng Zhang,&nbsp;Shuai Hu,&nbsp;Yufan Zang,&nbsp;Shaojie Wu,&nbsp;Yongfu Cai,&nbsp;Tan Wang,&nbsp;Fushan Li,&nbsp;Ran Wei,&nbsp;Shaokang Guan,&nbsp;Chen Chen\",\"doi\":\"10.1016/j.intermet.2024.108490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, partial replacement of Ni for Co was adopted in FCC + BCC heterostructure as-cast CrFeNi<sub>1-x</sub>Co<sub>x</sub>Al<sub>0.28</sub>Si<sub>0.09</sub>Ti<sub>0.02</sub>Cu<sub>0.01</sub> high entropy alloys (HEAs), and the modification in microstructure and mechanical properties of these alloys with the increase in the Co/Ni ratio has been systematically investigated. It was observed that all these designed HEAs consist of FCC sideplates with a surrounding BCC phase, as well as well-dispersed B2 phase in as-cast state. Additionally, higher Co/Ni ratio leads to a larger proportion of BCC phase, which has following impacts on the mechanical properties of this series of HEAs: when such ratio begins to increase, it has obvious enhancement in strength and gradual decrease in plasticity; when it reaches 0.15/0.85, it has high strength of ∼1.4 GPa and good plasticity of &gt;10 %. While further enhancing Co/Ni ratio leads to significant connection of BCC phase, resulting in drastic increase in brittleness. The detailed mechanism for such phenomenon has been discussed in detail. This study provides a novel route on improving the comprehensive mechanical properties of this series of as-cast HEAs.</p></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"175 \",\"pages\":\"Article 108490\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979524003091\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524003091","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文在 FCC + BCC 异质结构的铸态 CrFeNi1-xCoxAl0.28Si0.09Ti0.02Cu0.01 高熵合金(HEAs)中采用了部分镍替代 Co 的方法,并系统地研究了这些合金的微观结构和机械性能随 Co/Ni 比率的增加而发生的变化。研究发现,所有这些设计的 HEA 都由 FCC 侧板和周围的 BCC 相以及在铸造状态下分散良好的 B2 相组成。此外,Co/Ni 比值越高,BCC 相的比例越大,这对该系列 HEA 的力学性能有以下影响:当该比值开始增大时,强度明显提高,塑性逐渐降低;当该比值达到 0.15/0.85 时,强度高达 1.4 GPa,塑性为 10%。进一步提高钴/镍比会导致 BCC 相的显著连接,从而使脆性急剧增加。我们详细讨论了这种现象的详细机理。这项研究为改善该系列铸造 HEA 的综合机械性能提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Co/Ni ratio on microstructure and mechanical properties of as-cast Cr-Fe-Ni-Co-Al-Si-Ti-Cu high entropy alloys

In this paper, partial replacement of Ni for Co was adopted in FCC + BCC heterostructure as-cast CrFeNi1-xCoxAl0.28Si0.09Ti0.02Cu0.01 high entropy alloys (HEAs), and the modification in microstructure and mechanical properties of these alloys with the increase in the Co/Ni ratio has been systematically investigated. It was observed that all these designed HEAs consist of FCC sideplates with a surrounding BCC phase, as well as well-dispersed B2 phase in as-cast state. Additionally, higher Co/Ni ratio leads to a larger proportion of BCC phase, which has following impacts on the mechanical properties of this series of HEAs: when such ratio begins to increase, it has obvious enhancement in strength and gradual decrease in plasticity; when it reaches 0.15/0.85, it has high strength of ∼1.4 GPa and good plasticity of >10 %. While further enhancing Co/Ni ratio leads to significant connection of BCC phase, resulting in drastic increase in brittleness. The detailed mechanism for such phenomenon has been discussed in detail. This study provides a novel route on improving the comprehensive mechanical properties of this series of as-cast HEAs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信