{"title":"磁场辅助喷砂电弧加工(M-BEAM):Inconel 718 的新型高效和质量改进加工方法","authors":"","doi":"10.1016/j.jmapro.2024.09.020","DOIUrl":null,"url":null,"abstract":"<div><p>Electrical Arc Machining (EAM) presents an efficient technique for processing difficult-to-cut materials such as Inconel 718. However, despite its extremely high machining efficiency, the high energy density in machining makes it difficult to achieve a desirable surface quality that can be compatible with the subsequent cutting process. To solve this issue, this study explores the application of a magnetic field to enhance the performance of Blasting Erosion Arc Machining (BEAM), namely Magnetic Field assisted BEAM (M-BEAM). It leads to an increased Material Removal Rate (MRR) and reductions in both the Tool Wear Ratio (TWR) and the Surface Roughness (represented by Sa) with the increasing magnetic field strength, attributed to the improvements of the arc deflection and molten metal expelling. Moreover, the electromagnetic force is positively correlated with the discharge energy, which can further improve the machining performance of BEAM, especially when the hydrodynamic force is hard to act at large discharge energy. The MRR and Sa are enhanced and reduced by 14.52 % and 41.86 % respectively due to the stronger control effect at large energy. After multi-objective optimization, the optimized MRR in M-BEAM achieves a 9.22 % enhancement and Sa also decreases by 25.96 % and 60.61 % in the roughing and finishing process. This advancement also elevates machining precision as well as mitigates defects such as debris adhesion, overburning, and cracks. Moreover, the recast layer is significantly reduced by 88.59 % and 89.96 %. Consequently, M-BEAM promises extensive applications in aerospace industries for machining Inconel 718 and even for other difficult-to-cut materials with high efficiency and quality.</p></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic field assisted blasting erosion arc machining (M-BEAM): A novel efficient and quality improved machining method for Inconel 718\",\"authors\":\"\",\"doi\":\"10.1016/j.jmapro.2024.09.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrical Arc Machining (EAM) presents an efficient technique for processing difficult-to-cut materials such as Inconel 718. However, despite its extremely high machining efficiency, the high energy density in machining makes it difficult to achieve a desirable surface quality that can be compatible with the subsequent cutting process. To solve this issue, this study explores the application of a magnetic field to enhance the performance of Blasting Erosion Arc Machining (BEAM), namely Magnetic Field assisted BEAM (M-BEAM). It leads to an increased Material Removal Rate (MRR) and reductions in both the Tool Wear Ratio (TWR) and the Surface Roughness (represented by Sa) with the increasing magnetic field strength, attributed to the improvements of the arc deflection and molten metal expelling. Moreover, the electromagnetic force is positively correlated with the discharge energy, which can further improve the machining performance of BEAM, especially when the hydrodynamic force is hard to act at large discharge energy. The MRR and Sa are enhanced and reduced by 14.52 % and 41.86 % respectively due to the stronger control effect at large energy. After multi-objective optimization, the optimized MRR in M-BEAM achieves a 9.22 % enhancement and Sa also decreases by 25.96 % and 60.61 % in the roughing and finishing process. This advancement also elevates machining precision as well as mitigates defects such as debris adhesion, overburning, and cracks. Moreover, the recast layer is significantly reduced by 88.59 % and 89.96 %. Consequently, M-BEAM promises extensive applications in aerospace industries for machining Inconel 718 and even for other difficult-to-cut materials with high efficiency and quality.</p></div>\",\"PeriodicalId\":16148,\"journal\":{\"name\":\"Journal of Manufacturing Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1526612524009253\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524009253","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Magnetic field assisted blasting erosion arc machining (M-BEAM): A novel efficient and quality improved machining method for Inconel 718
Electrical Arc Machining (EAM) presents an efficient technique for processing difficult-to-cut materials such as Inconel 718. However, despite its extremely high machining efficiency, the high energy density in machining makes it difficult to achieve a desirable surface quality that can be compatible with the subsequent cutting process. To solve this issue, this study explores the application of a magnetic field to enhance the performance of Blasting Erosion Arc Machining (BEAM), namely Magnetic Field assisted BEAM (M-BEAM). It leads to an increased Material Removal Rate (MRR) and reductions in both the Tool Wear Ratio (TWR) and the Surface Roughness (represented by Sa) with the increasing magnetic field strength, attributed to the improvements of the arc deflection and molten metal expelling. Moreover, the electromagnetic force is positively correlated with the discharge energy, which can further improve the machining performance of BEAM, especially when the hydrodynamic force is hard to act at large discharge energy. The MRR and Sa are enhanced and reduced by 14.52 % and 41.86 % respectively due to the stronger control effect at large energy. After multi-objective optimization, the optimized MRR in M-BEAM achieves a 9.22 % enhancement and Sa also decreases by 25.96 % and 60.61 % in the roughing and finishing process. This advancement also elevates machining precision as well as mitigates defects such as debris adhesion, overburning, and cracks. Moreover, the recast layer is significantly reduced by 88.59 % and 89.96 %. Consequently, M-BEAM promises extensive applications in aerospace industries for machining Inconel 718 and even for other difficult-to-cut materials with high efficiency and quality.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.