锚栓预紧力对纤维织物-钢界面粘结-滑动行为的影响

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL
{"title":"锚栓预紧力对纤维织物-钢界面粘结-滑动行为的影响","authors":"","doi":"10.1016/j.istruc.2024.107281","DOIUrl":null,"url":null,"abstract":"<div><p>Bond-slip behavior is a common failure mode in steel structures reinforced with fiber fabric. Premature debonding of the fiber fabric significantly impacts the effectiveness of steel structure reinforcement. In this study, a gripping anchor is proposed to enhance the reliability of the interface between fiber fabric and steel plates. Experimental investigations were conducted to analyze the influence of anchor bolt preload on the double shear joint between fiber fabric and steel plates. 41 specimens were prepared and tested to explore the effects of parameters such as bolt preload, anchor position, number and type of fiber fabric layers, and bond length on load-bearing capacity. Comparative analyses were conducted on failure modes, ultimate loads, and stress-strain distributions of the specimens. Experimental results indicate that the position of the anchor has a minimal impact on the ultimate bearing capacity of the specimen. However, anchors positioned closer to the joint end exhibit lower ductility upon failure. A novel predictive model was developed to characterize the bond-slip behavior of preload applied to carbon fiber fabric and steel plates. The theoretical model of the ultimate bearing capacity in the yield stage fits well with the experimental results of specimens with three layers of carbon fiber fabric, with a difference range of 0.34 % to 14.97 % compared to actual results. This indicates that the model has high accuracy in predicting stress-strain and bearing capacity.</p></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of bolt preload of anchors on bond-slip behavior of fiber fabric-steel interface\",\"authors\":\"\",\"doi\":\"10.1016/j.istruc.2024.107281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bond-slip behavior is a common failure mode in steel structures reinforced with fiber fabric. Premature debonding of the fiber fabric significantly impacts the effectiveness of steel structure reinforcement. In this study, a gripping anchor is proposed to enhance the reliability of the interface between fiber fabric and steel plates. Experimental investigations were conducted to analyze the influence of anchor bolt preload on the double shear joint between fiber fabric and steel plates. 41 specimens were prepared and tested to explore the effects of parameters such as bolt preload, anchor position, number and type of fiber fabric layers, and bond length on load-bearing capacity. Comparative analyses were conducted on failure modes, ultimate loads, and stress-strain distributions of the specimens. Experimental results indicate that the position of the anchor has a minimal impact on the ultimate bearing capacity of the specimen. However, anchors positioned closer to the joint end exhibit lower ductility upon failure. A novel predictive model was developed to characterize the bond-slip behavior of preload applied to carbon fiber fabric and steel plates. The theoretical model of the ultimate bearing capacity in the yield stage fits well with the experimental results of specimens with three layers of carbon fiber fabric, with a difference range of 0.34 % to 14.97 % compared to actual results. This indicates that the model has high accuracy in predicting stress-strain and bearing capacity.</p></div>\",\"PeriodicalId\":48642,\"journal\":{\"name\":\"Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352012424014334\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424014334","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

粘结滑移行为是纤维织物加固钢结构的一种常见失效模式。纤维织物的过早剥离会严重影响钢结构加固的效果。本研究提出了一种夹持锚,以提高纤维织物与钢板之间界面的可靠性。实验研究分析了锚栓预紧力对纤维织物和钢板之间双剪切连接的影响。制备并测试了 41 个试样,以探讨螺栓预紧力、锚固位置、纤维织物层数和类型以及粘接长度等参数对承载能力的影响。对试样的破坏模式、极限载荷和应力应变分布进行了比较分析。实验结果表明,锚固位置对试样的极限承载能力影响很小。然而,位置更靠近连接端的锚固件在失效时表现出更低的延展性。为描述施加在碳纤维织物和钢板上的预紧力的粘结滑移行为,开发了一种新的预测模型。屈服阶段极限承载力的理论模型与三层碳纤维织物试样的实验结果非常吻合,与实际结果的差异范围在 0.34 % 到 14.97 % 之间。这表明该模型在预测应力应变和承载能力方面具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of bolt preload of anchors on bond-slip behavior of fiber fabric-steel interface

Bond-slip behavior is a common failure mode in steel structures reinforced with fiber fabric. Premature debonding of the fiber fabric significantly impacts the effectiveness of steel structure reinforcement. In this study, a gripping anchor is proposed to enhance the reliability of the interface between fiber fabric and steel plates. Experimental investigations were conducted to analyze the influence of anchor bolt preload on the double shear joint between fiber fabric and steel plates. 41 specimens were prepared and tested to explore the effects of parameters such as bolt preload, anchor position, number and type of fiber fabric layers, and bond length on load-bearing capacity. Comparative analyses were conducted on failure modes, ultimate loads, and stress-strain distributions of the specimens. Experimental results indicate that the position of the anchor has a minimal impact on the ultimate bearing capacity of the specimen. However, anchors positioned closer to the joint end exhibit lower ductility upon failure. A novel predictive model was developed to characterize the bond-slip behavior of preload applied to carbon fiber fabric and steel plates. The theoretical model of the ultimate bearing capacity in the yield stage fits well with the experimental results of specimens with three layers of carbon fiber fabric, with a difference range of 0.34 % to 14.97 % compared to actual results. This indicates that the model has high accuracy in predicting stress-strain and bearing capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信