{"title":"利用强化沙猫群优化技术优化的动态稳定递归神经网络,用于无线传感器网络的入侵检测","authors":"A. Punitha , P. Ramani , Ezhilarasi P , Sridhar S","doi":"10.1016/j.cose.2024.104094","DOIUrl":null,"url":null,"abstract":"<div><p>Wireless Sensor Networks (WSNs) are susceptible to various security threats owing to its deployment in hostile environments. Intrusion detection system (IDS) contributes a critical role on securing WSNs by identifying malevolent activities and ensuring data integrity. Traditional IDS techniques often struggle with the dynamic and resource-constrained nature of WSNs. In this paper, Dynamically Stabilized Recurrent Neural Network Optimized with Intensified Sand Cat Swarm Optimization for Wireless Sensor Network Intrusion identification (DSRNN-ISCOA-ID-WSN) is proposed. Initially, the input data is amassed from WSN-DS dataset. After that, the pre-processing segment receives the data. In pre-processing stage, redundant and biased records are removed from input data with the help of Adaptive multi-scale improved differential filter (AMSIDF). Then the optimal are selected by utilizing Wolf-Bird Optimization Algorithm (WBOA). DSRNN is used to classify the data as Normal, Grey hole, Black hole, Time division multiple access (TDMA), and Flooding attacks. Then Intensified Sand Cat Swarm Optimization (ISCOA) is employed to optimize the weight parameters of DSRNN for accuracte classification. The proposed DSRNN-ISCOA-ID-WSN technique is implemented Python. The performance of the proposed DSRNN-ISCOA-ID-WSN approach attains 29.24 %, 33.45 %, and 28.73 % high accuracy; 30.53 %, 27.64 %, and 26.25 % higher precision when compared with existing method such as Machine Learning-Powered Stochastic Gradient Descent Intrusions Detection System for WSN Attacks (SGDA-ID-WSN), An updated dataset to identify threats in WSN (CNN-ID-WSN) and Denial-of-Service attack detection in WSN: a Low-Complexity Machine Learning Model (DTA-ID-WSN) respectively.</p></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"148 ","pages":"Article 104094"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamically stabilized recurrent neural network optimized with intensified sand cat swarm optimization for intrusion detection in wireless sensor network\",\"authors\":\"A. Punitha , P. Ramani , Ezhilarasi P , Sridhar S\",\"doi\":\"10.1016/j.cose.2024.104094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wireless Sensor Networks (WSNs) are susceptible to various security threats owing to its deployment in hostile environments. Intrusion detection system (IDS) contributes a critical role on securing WSNs by identifying malevolent activities and ensuring data integrity. Traditional IDS techniques often struggle with the dynamic and resource-constrained nature of WSNs. In this paper, Dynamically Stabilized Recurrent Neural Network Optimized with Intensified Sand Cat Swarm Optimization for Wireless Sensor Network Intrusion identification (DSRNN-ISCOA-ID-WSN) is proposed. Initially, the input data is amassed from WSN-DS dataset. After that, the pre-processing segment receives the data. In pre-processing stage, redundant and biased records are removed from input data with the help of Adaptive multi-scale improved differential filter (AMSIDF). Then the optimal are selected by utilizing Wolf-Bird Optimization Algorithm (WBOA). DSRNN is used to classify the data as Normal, Grey hole, Black hole, Time division multiple access (TDMA), and Flooding attacks. Then Intensified Sand Cat Swarm Optimization (ISCOA) is employed to optimize the weight parameters of DSRNN for accuracte classification. The proposed DSRNN-ISCOA-ID-WSN technique is implemented Python. The performance of the proposed DSRNN-ISCOA-ID-WSN approach attains 29.24 %, 33.45 %, and 28.73 % high accuracy; 30.53 %, 27.64 %, and 26.25 % higher precision when compared with existing method such as Machine Learning-Powered Stochastic Gradient Descent Intrusions Detection System for WSN Attacks (SGDA-ID-WSN), An updated dataset to identify threats in WSN (CNN-ID-WSN) and Denial-of-Service attack detection in WSN: a Low-Complexity Machine Learning Model (DTA-ID-WSN) respectively.</p></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":\"148 \",\"pages\":\"Article 104094\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824003997\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824003997","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Dynamically stabilized recurrent neural network optimized with intensified sand cat swarm optimization for intrusion detection in wireless sensor network
Wireless Sensor Networks (WSNs) are susceptible to various security threats owing to its deployment in hostile environments. Intrusion detection system (IDS) contributes a critical role on securing WSNs by identifying malevolent activities and ensuring data integrity. Traditional IDS techniques often struggle with the dynamic and resource-constrained nature of WSNs. In this paper, Dynamically Stabilized Recurrent Neural Network Optimized with Intensified Sand Cat Swarm Optimization for Wireless Sensor Network Intrusion identification (DSRNN-ISCOA-ID-WSN) is proposed. Initially, the input data is amassed from WSN-DS dataset. After that, the pre-processing segment receives the data. In pre-processing stage, redundant and biased records are removed from input data with the help of Adaptive multi-scale improved differential filter (AMSIDF). Then the optimal are selected by utilizing Wolf-Bird Optimization Algorithm (WBOA). DSRNN is used to classify the data as Normal, Grey hole, Black hole, Time division multiple access (TDMA), and Flooding attacks. Then Intensified Sand Cat Swarm Optimization (ISCOA) is employed to optimize the weight parameters of DSRNN for accuracte classification. The proposed DSRNN-ISCOA-ID-WSN technique is implemented Python. The performance of the proposed DSRNN-ISCOA-ID-WSN approach attains 29.24 %, 33.45 %, and 28.73 % high accuracy; 30.53 %, 27.64 %, and 26.25 % higher precision when compared with existing method such as Machine Learning-Powered Stochastic Gradient Descent Intrusions Detection System for WSN Attacks (SGDA-ID-WSN), An updated dataset to identify threats in WSN (CNN-ID-WSN) and Denial-of-Service attack detection in WSN: a Low-Complexity Machine Learning Model (DTA-ID-WSN) respectively.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.