Ching-Chu Hsieh , Yung-Chun Lin , Wei-Bo Lin, Che-Chi Shu
{"title":"在酶促反应中,逆反应会降低产物噪音","authors":"Ching-Chu Hsieh , Yung-Chun Lin , Wei-Bo Lin, Che-Chi Shu","doi":"10.1016/j.biosystems.2024.105334","DOIUrl":null,"url":null,"abstract":"<div><p>Enzymatic reactions are essential for most cellular reactions and ubiquitous in living organisms. In the present study, we explore the pivotal role of the reverse reaction in enzymatic reactions. It is a powerful noise-buffering motif. By SSA (stochastic simulation algorithm), a remarkable 32% reduction of product CV (coefficient of variation) was observed. To better understand the causes, we split the upstream noise. The product CV reduction is more than 35% for the noise inherited from the enzyme but merely 6%–21% for that from the substrate. It implies that the system applies different strategies to different upstream noises. We identified two leading causes responsible for noise attenuation. A cell is well designed to control its intracellular noise, and to acquire wisdom from nature is always enjoyable.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In enzymatic reactions, the reverse reaction reduces product noise\",\"authors\":\"Ching-Chu Hsieh , Yung-Chun Lin , Wei-Bo Lin, Che-Chi Shu\",\"doi\":\"10.1016/j.biosystems.2024.105334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enzymatic reactions are essential for most cellular reactions and ubiquitous in living organisms. In the present study, we explore the pivotal role of the reverse reaction in enzymatic reactions. It is a powerful noise-buffering motif. By SSA (stochastic simulation algorithm), a remarkable 32% reduction of product CV (coefficient of variation) was observed. To better understand the causes, we split the upstream noise. The product CV reduction is more than 35% for the noise inherited from the enzyme but merely 6%–21% for that from the substrate. It implies that the system applies different strategies to different upstream noises. We identified two leading causes responsible for noise attenuation. A cell is well designed to control its intracellular noise, and to acquire wisdom from nature is always enjoyable.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264724002193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724002193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
In enzymatic reactions, the reverse reaction reduces product noise
Enzymatic reactions are essential for most cellular reactions and ubiquitous in living organisms. In the present study, we explore the pivotal role of the reverse reaction in enzymatic reactions. It is a powerful noise-buffering motif. By SSA (stochastic simulation algorithm), a remarkable 32% reduction of product CV (coefficient of variation) was observed. To better understand the causes, we split the upstream noise. The product CV reduction is more than 35% for the noise inherited from the enzyme but merely 6%–21% for that from the substrate. It implies that the system applies different strategies to different upstream noises. We identified two leading causes responsible for noise attenuation. A cell is well designed to control its intracellular noise, and to acquire wisdom from nature is always enjoyable.