{"title":"二元节包多面体的两组不等式","authors":"Todd Easton , Jennifer Tryon , Fabio Vitor","doi":"10.1016/j.disopt.2024.100859","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents two-set inequalities, a class of valid inequalities for knapsack and multiple knapsack problems. Two-set inequalities are generated from two arbitrary sets of variables from a knapsack constraint. This class of cutting planes is not a traditional type of lifting since a valid inequality over a restricted space is not required to start. Furthermore, they cannot be derived using any existing lifting technique. The paper presents a quadratic algorithm to efficiently generate many two-set inequalities. Conditions for facet-defining two-set inequalities are also derived. Computational experiments tested these inequalities as pre-processing cuts versus CPLEX, a high-performance mathematical programming solver, at default settings. Overall, two-set inequalities reduced the time to solve some benchmark multiple knapsack instances to up to 80%. Computational results also showed the potential of this new class of cutting planes to solve computationally challenging binary integer programs.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"54 ","pages":"Article 100859"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-set inequalities for the binary knapsack polyhedra\",\"authors\":\"Todd Easton , Jennifer Tryon , Fabio Vitor\",\"doi\":\"10.1016/j.disopt.2024.100859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents two-set inequalities, a class of valid inequalities for knapsack and multiple knapsack problems. Two-set inequalities are generated from two arbitrary sets of variables from a knapsack constraint. This class of cutting planes is not a traditional type of lifting since a valid inequality over a restricted space is not required to start. Furthermore, they cannot be derived using any existing lifting technique. The paper presents a quadratic algorithm to efficiently generate many two-set inequalities. Conditions for facet-defining two-set inequalities are also derived. Computational experiments tested these inequalities as pre-processing cuts versus CPLEX, a high-performance mathematical programming solver, at default settings. Overall, two-set inequalities reduced the time to solve some benchmark multiple knapsack instances to up to 80%. Computational results also showed the potential of this new class of cutting planes to solve computationally challenging binary integer programs.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"54 \",\"pages\":\"Article 100859\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528624000380\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528624000380","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Two-set inequalities for the binary knapsack polyhedra
This paper presents two-set inequalities, a class of valid inequalities for knapsack and multiple knapsack problems. Two-set inequalities are generated from two arbitrary sets of variables from a knapsack constraint. This class of cutting planes is not a traditional type of lifting since a valid inequality over a restricted space is not required to start. Furthermore, they cannot be derived using any existing lifting technique. The paper presents a quadratic algorithm to efficiently generate many two-set inequalities. Conditions for facet-defining two-set inequalities are also derived. Computational experiments tested these inequalities as pre-processing cuts versus CPLEX, a high-performance mathematical programming solver, at default settings. Overall, two-set inequalities reduced the time to solve some benchmark multiple knapsack instances to up to 80%. Computational results also showed the potential of this new class of cutting planes to solve computationally challenging binary integer programs.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.