{"title":"用于 USV 辅助近海测深绘图的联合优化覆盖路径规划框架:从理论到实践","authors":"Liang Zhao , Yong Bai","doi":"10.1016/j.knosys.2024.112449","DOIUrl":null,"url":null,"abstract":"<div><p>Designing effective coverage routes for unmanned surface vehicles (USVs) is crucial to improve the efficiency of offshore bathymetric surveys. However, existing coverage planning methods for practical use are limited, primarily due to the large-scale surveying areas and intricate region geometries caused by coastal features. This study aims to address these challenges by introducing a coverage path planning framework for USV-assisted bathymetric mapping, specifically aimed at the joint optimization of paths to cover numerous complex regions. Initially, we conceptualize the large-scale bathymetric survey mission as an integer programming model. The model uses four distinct decision variables to meticulously formulate length calculations, inter-regional connections, entry and exit point selections, and line sweep direction. Then, a novel hierarchical algorithm is devised to solve the problem. The method first incorporates a bisection-based convex decomposition method to achieve optimal partitioning of complex regions. Additionally, a hierarchical heuristic optimization algorithm that seamlessly integrates the optimization of all influencing factors is designed, which includes order generation, candidate pattern finding, tour finding, and final optimization. The reliability of the framework is validated through semi-physical simulations and lake trials using a real USV. Through comparative studies, our model demonstrates clear advantages in computational efficiency and optimization capability compared to state-of-the-arts, with its superiority becoming more pronounced as the problem scale increases. The results from lake trials further affirm the efficient and reliable performance of our model in practical bathymetric survey tasks.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint-optimized coverage path planning framework for USV-assisted offshore bathymetric mapping: From theory to practice\",\"authors\":\"Liang Zhao , Yong Bai\",\"doi\":\"10.1016/j.knosys.2024.112449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Designing effective coverage routes for unmanned surface vehicles (USVs) is crucial to improve the efficiency of offshore bathymetric surveys. However, existing coverage planning methods for practical use are limited, primarily due to the large-scale surveying areas and intricate region geometries caused by coastal features. This study aims to address these challenges by introducing a coverage path planning framework for USV-assisted bathymetric mapping, specifically aimed at the joint optimization of paths to cover numerous complex regions. Initially, we conceptualize the large-scale bathymetric survey mission as an integer programming model. The model uses four distinct decision variables to meticulously formulate length calculations, inter-regional connections, entry and exit point selections, and line sweep direction. Then, a novel hierarchical algorithm is devised to solve the problem. The method first incorporates a bisection-based convex decomposition method to achieve optimal partitioning of complex regions. Additionally, a hierarchical heuristic optimization algorithm that seamlessly integrates the optimization of all influencing factors is designed, which includes order generation, candidate pattern finding, tour finding, and final optimization. The reliability of the framework is validated through semi-physical simulations and lake trials using a real USV. Through comparative studies, our model demonstrates clear advantages in computational efficiency and optimization capability compared to state-of-the-arts, with its superiority becoming more pronounced as the problem scale increases. The results from lake trials further affirm the efficient and reliable performance of our model in practical bathymetric survey tasks.</p></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124010839\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124010839","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Joint-optimized coverage path planning framework for USV-assisted offshore bathymetric mapping: From theory to practice
Designing effective coverage routes for unmanned surface vehicles (USVs) is crucial to improve the efficiency of offshore bathymetric surveys. However, existing coverage planning methods for practical use are limited, primarily due to the large-scale surveying areas and intricate region geometries caused by coastal features. This study aims to address these challenges by introducing a coverage path planning framework for USV-assisted bathymetric mapping, specifically aimed at the joint optimization of paths to cover numerous complex regions. Initially, we conceptualize the large-scale bathymetric survey mission as an integer programming model. The model uses four distinct decision variables to meticulously formulate length calculations, inter-regional connections, entry and exit point selections, and line sweep direction. Then, a novel hierarchical algorithm is devised to solve the problem. The method first incorporates a bisection-based convex decomposition method to achieve optimal partitioning of complex regions. Additionally, a hierarchical heuristic optimization algorithm that seamlessly integrates the optimization of all influencing factors is designed, which includes order generation, candidate pattern finding, tour finding, and final optimization. The reliability of the framework is validated through semi-physical simulations and lake trials using a real USV. Through comparative studies, our model demonstrates clear advantages in computational efficiency and optimization capability compared to state-of-the-arts, with its superiority becoming more pronounced as the problem scale increases. The results from lake trials further affirm the efficient and reliable performance of our model in practical bathymetric survey tasks.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.