梯形外壳中幂律非牛顿纳米封装相变材料的磁流体力学双扩散自然对流

IF 4 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Khairunnahar Suchana, Md. Mamun Molla
{"title":"梯形外壳中幂律非牛顿纳米封装相变材料的磁流体力学双扩散自然对流","authors":"Khairunnahar Suchana, Md. Mamun Molla","doi":"10.1108/hff-02-2024-0170","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The present numerical investigation examines the magnetohydrodynamic (MHD) double diffusion natural convection of power-law non-Newtonian nano-encapsulated phase change materials (NEPCMs) in a trapezoidal cavity.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The governing Navier-Stokes, energy and concentration equations based on the Cartesian curvilinear coordinates are solved using the collocated grid arrangement’s finite volume method. The in-house FORTRAN code is validated with the different benchmark problems. The NEPCM nanoparticles consist of a core-shell structure with Phase Change Material (PCM) at the core. The enclosure, shaped as a trapezoidal hollow, features a warmed (<em>T<sub>h</sub></em>) left wall and a cold (<em>T<sub>c</sub></em>) right wall. Various parameters are considered, including the power law index (0.6 ≤ <em>n</em> ≤ 1.4), Hartmann number (0 ≤ <em>Ha</em> ≤ 30), Rayleigh number (10<sup>4</sup> ≤ <em>Ra</em> ≤ 10<sup>5</sup>) and fixed variables such as buoyancy ratio (<em>Br</em> = 0.8), Prandtl number (<em>Pr</em> = 6.2), Lewis number (<em>Le</em> = 5), fusion temperature (Θ<sub><em>f</em></sub> = 0.5) and volume fraction (ϕ = 0.04).</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The findings indicate a decrease in local Nusselt (<em>Nu</em>) and Sherwood (<em>Sh</em>) numbers with increasing Hartmann numbers (<em>Ha</em>). Additionally, for a shear-thinning fluid (<em>n</em> = 0.6) results in the maximum local <em>Nu</em> and <em>Sh</em> values. As the Rayleigh number (<em>Ra</em>) increases from 10<sup>4</sup> to 10<sup>5</sup>, the structured vortex in the streamline pattern is disturbed. Furthermore, for different <em>Ra</em> values, an increase in <em>n</em> from 0.6 to 1.4 leads to a 67.43% to 76.88% decrease in average <em>Nu</em> and a 70% to 77% decrease in average <em>Sh</em>.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>This research is for two-dimensioal laminar flow only.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>PCMs represent a class of practical substances that behave as a function of temperature and have the innate ability to absorb, release and store heated energy in the form of hidden fusion enthalpy, or heat. They are valuable in these systems as they can store significant energy at a relatively constant temperature through their latent heat phase change.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>As per the literature review and the authors’ understanding, an examination has never been conducted on MHD double diffusion natural convection of power-law non-Newtonian NEPCMs within a trapezoidal enclosure. The current work is innovative since it combines NEPCMs with the effect of magnetic field Double diffusion Natural Convection of power-law non-Newtonian NEPCMs in a Trapezoidal enclosure. This outcome can be used to improve thermal management in energy storage systems, increasing safety and effectiveness.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"52 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetohydrodynamic double diffusion natural convection of power-law Non-Newtonian Nano-Encapsulated phase change materials in a trapezoidal enclosure\",\"authors\":\"Khairunnahar Suchana, Md. Mamun Molla\",\"doi\":\"10.1108/hff-02-2024-0170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The present numerical investigation examines the magnetohydrodynamic (MHD) double diffusion natural convection of power-law non-Newtonian nano-encapsulated phase change materials (NEPCMs) in a trapezoidal cavity.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The governing Navier-Stokes, energy and concentration equations based on the Cartesian curvilinear coordinates are solved using the collocated grid arrangement’s finite volume method. The in-house FORTRAN code is validated with the different benchmark problems. The NEPCM nanoparticles consist of a core-shell structure with Phase Change Material (PCM) at the core. The enclosure, shaped as a trapezoidal hollow, features a warmed (<em>T<sub>h</sub></em>) left wall and a cold (<em>T<sub>c</sub></em>) right wall. Various parameters are considered, including the power law index (0.6 ≤ <em>n</em> ≤ 1.4), Hartmann number (0 ≤ <em>Ha</em> ≤ 30), Rayleigh number (10<sup>4</sup> ≤ <em>Ra</em> ≤ 10<sup>5</sup>) and fixed variables such as buoyancy ratio (<em>Br</em> = 0.8), Prandtl number (<em>Pr</em> = 6.2), Lewis number (<em>Le</em> = 5), fusion temperature (Θ<sub><em>f</em></sub> = 0.5) and volume fraction (ϕ = 0.04).</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The findings indicate a decrease in local Nusselt (<em>Nu</em>) and Sherwood (<em>Sh</em>) numbers with increasing Hartmann numbers (<em>Ha</em>). Additionally, for a shear-thinning fluid (<em>n</em> = 0.6) results in the maximum local <em>Nu</em> and <em>Sh</em> values. As the Rayleigh number (<em>Ra</em>) increases from 10<sup>4</sup> to 10<sup>5</sup>, the structured vortex in the streamline pattern is disturbed. Furthermore, for different <em>Ra</em> values, an increase in <em>n</em> from 0.6 to 1.4 leads to a 67.43% to 76.88% decrease in average <em>Nu</em> and a 70% to 77% decrease in average <em>Sh</em>.</p><!--/ Abstract__block -->\\n<h3>Research limitations/implications</h3>\\n<p>This research is for two-dimensioal laminar flow only.</p><!--/ Abstract__block -->\\n<h3>Practical implications</h3>\\n<p>PCMs represent a class of practical substances that behave as a function of temperature and have the innate ability to absorb, release and store heated energy in the form of hidden fusion enthalpy, or heat. They are valuable in these systems as they can store significant energy at a relatively constant temperature through their latent heat phase change.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>As per the literature review and the authors’ understanding, an examination has never been conducted on MHD double diffusion natural convection of power-law non-Newtonian NEPCMs within a trapezoidal enclosure. The current work is innovative since it combines NEPCMs with the effect of magnetic field Double diffusion Natural Convection of power-law non-Newtonian NEPCMs in a Trapezoidal enclosure. This outcome can be used to improve thermal management in energy storage systems, increasing safety and effectiveness.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-02-2024-0170\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-02-2024-0170","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本数值研究探讨了梯形空腔中幂律非牛顿纳米封装相变材料(NEPCMs)的磁流体力学(MHD)双扩散自然对流。用不同的基准问题对内部 FORTRAN 代码进行了验证。NEPCM 纳米粒子由核心为相变材料 (PCM) 的核壳结构组成。外壳形状为梯形空心,左壁为热壁(Th),右壁为冷壁(Tc)。考虑了各种参数,包括幂律指数(0.6 ≤ n ≤ 1.4)、哈特曼数(0 ≤ Ha ≤ 30)、瑞利数(104 ≤ Ra ≤ 105)以及浮力比(Br = 0.8)、普朗特数(Pr = 6.研究结果研究结果表明,随着哈特曼数(Ha)的增加,局部努塞尔特数(Nu)和舍伍德数(Sh)也随之降低。此外,剪切稀化流体(n = 0.6)的局部 Nu 和 Sh 值最大。当雷利数(Ra)从 104 增加到 105 时,流线型中的结构涡受到干扰。此外,对于不同的 Ra 值,n 从 0.6 增加到 1.4 会导致平均 Nu 下降 67.43% 到 76.88%,平均 Sh 下降 70% 到 77%。在这些系统中,它们具有重要价值,因为它们可以通过潜热相变在相对恒定的温度下储存大量能量。原创性/价值根据文献综述和作者的理解,从未对梯形围墙内幂律非牛顿非EPCM 的 MHD 双扩散自然对流进行过研究。目前的工作具有创新性,因为它将 NEPCM 与磁场效应相结合,在梯形外壳中实现了幂律非牛顿 NEPCM 的双扩散自然对流。这一成果可用于改善储能系统的热管理,提高安全性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetohydrodynamic double diffusion natural convection of power-law Non-Newtonian Nano-Encapsulated phase change materials in a trapezoidal enclosure

Purpose

The present numerical investigation examines the magnetohydrodynamic (MHD) double diffusion natural convection of power-law non-Newtonian nano-encapsulated phase change materials (NEPCMs) in a trapezoidal cavity.

Design/methodology/approach

The governing Navier-Stokes, energy and concentration equations based on the Cartesian curvilinear coordinates are solved using the collocated grid arrangement’s finite volume method. The in-house FORTRAN code is validated with the different benchmark problems. The NEPCM nanoparticles consist of a core-shell structure with Phase Change Material (PCM) at the core. The enclosure, shaped as a trapezoidal hollow, features a warmed (Th) left wall and a cold (Tc) right wall. Various parameters are considered, including the power law index (0.6 ≤ n ≤ 1.4), Hartmann number (0 ≤ Ha ≤ 30), Rayleigh number (104Ra ≤ 105) and fixed variables such as buoyancy ratio (Br = 0.8), Prandtl number (Pr = 6.2), Lewis number (Le = 5), fusion temperature (Θf = 0.5) and volume fraction (ϕ = 0.04).

Findings

The findings indicate a decrease in local Nusselt (Nu) and Sherwood (Sh) numbers with increasing Hartmann numbers (Ha). Additionally, for a shear-thinning fluid (n = 0.6) results in the maximum local Nu and Sh values. As the Rayleigh number (Ra) increases from 104 to 105, the structured vortex in the streamline pattern is disturbed. Furthermore, for different Ra values, an increase in n from 0.6 to 1.4 leads to a 67.43% to 76.88% decrease in average Nu and a 70% to 77% decrease in average Sh.

Research limitations/implications

This research is for two-dimensioal laminar flow only.

Practical implications

PCMs represent a class of practical substances that behave as a function of temperature and have the innate ability to absorb, release and store heated energy in the form of hidden fusion enthalpy, or heat. They are valuable in these systems as they can store significant energy at a relatively constant temperature through their latent heat phase change.

Originality/value

As per the literature review and the authors’ understanding, an examination has never been conducted on MHD double diffusion natural convection of power-law non-Newtonian NEPCMs within a trapezoidal enclosure. The current work is innovative since it combines NEPCMs with the effect of magnetic field Double diffusion Natural Convection of power-law non-Newtonian NEPCMs in a Trapezoidal enclosure. This outcome can be used to improve thermal management in energy storage systems, increasing safety and effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
11.90%
发文量
100
审稿时长
6-12 weeks
期刊介绍: The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信