分数微积分及其在 Wolfram Mathematica 中的计算机实现概述

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Oleg Marichev, Elina Shishkina
{"title":"分数微积分及其在 Wolfram Mathematica 中的计算机实现概述","authors":"Oleg Marichev, Elina Shishkina","doi":"10.1007/s13540-024-00332-x","DOIUrl":null,"url":null,"abstract":"<p>This survey aims to present various approaches to non-integer integrals and derivatives and their practical implementation within Wolfram Mathematica. It begins by short discussion of historical moments and applications related to fractional calculus. Different methods for handling non-integer powers of differentiation operators are presented, along with generalizations of fractional integrals and derivatives. The survey also delves into the diverse applications of fractional calculus in physics, engineering, medicine, and numerical calculations. Essential details of fractional integro-differentiation implemented in Wolfram Mathematica are highlighted. The Hadamard regularization of Riemann-Liouville operator is utilized as the foundation for creating the arbitrary order of integro-differential operator in Mathematica. The survey describes the application of fractional integro-differentiation to Taylor series expansions near zero using Hadamard regularization and the use of the Meijer <i>G</i>-function for evaluating derivatives of complex orders. We conclude with a discussion on applying fractional integro-differentiation to “differential constants” and provide generic formulas for fractional differentiation. The extensive list of references underscores the vast body of works on fractional calculus.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview of fractional calculus and its computer implementation in Wolfram Mathematica\",\"authors\":\"Oleg Marichev, Elina Shishkina\",\"doi\":\"10.1007/s13540-024-00332-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This survey aims to present various approaches to non-integer integrals and derivatives and their practical implementation within Wolfram Mathematica. It begins by short discussion of historical moments and applications related to fractional calculus. Different methods for handling non-integer powers of differentiation operators are presented, along with generalizations of fractional integrals and derivatives. The survey also delves into the diverse applications of fractional calculus in physics, engineering, medicine, and numerical calculations. Essential details of fractional integro-differentiation implemented in Wolfram Mathematica are highlighted. The Hadamard regularization of Riemann-Liouville operator is utilized as the foundation for creating the arbitrary order of integro-differential operator in Mathematica. The survey describes the application of fractional integro-differentiation to Taylor series expansions near zero using Hadamard regularization and the use of the Meijer <i>G</i>-function for evaluating derivatives of complex orders. We conclude with a discussion on applying fractional integro-differentiation to “differential constants” and provide generic formulas for fractional differentiation. The extensive list of references underscores the vast body of works on fractional calculus.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00332-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00332-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本调查旨在介绍非整数积分和导数的各种方法及其在 Wolfram Mathematica 中的实际应用。首先简要讨论与分数微积分相关的历史时刻和应用。书中介绍了处理微分算子非整数幂的不同方法,以及分数积分和导数的一般化。本研究还深入探讨了分数微积分在物理学、工程学、医学和数值计算中的各种应用。重点介绍了在 Wolfram Mathematica 中实现分数积分微分的基本细节。在 Mathematica 中创建任意阶的积分微分算子的基础是黎曼-刘维尔算子的 Hadamard 正则化。研究介绍了利用哈达玛正则化将分数积分微分应用于零附近的泰勒级数展开,以及利用梅耶尔 G 函数评估复阶导数。最后,我们讨论了如何将分数积分微分应用于 "微分常数",并提供了分数微分的通用公式。广泛的参考文献列表强调了分数微积分的大量著作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overview of fractional calculus and its computer implementation in Wolfram Mathematica

This survey aims to present various approaches to non-integer integrals and derivatives and their practical implementation within Wolfram Mathematica. It begins by short discussion of historical moments and applications related to fractional calculus. Different methods for handling non-integer powers of differentiation operators are presented, along with generalizations of fractional integrals and derivatives. The survey also delves into the diverse applications of fractional calculus in physics, engineering, medicine, and numerical calculations. Essential details of fractional integro-differentiation implemented in Wolfram Mathematica are highlighted. The Hadamard regularization of Riemann-Liouville operator is utilized as the foundation for creating the arbitrary order of integro-differential operator in Mathematica. The survey describes the application of fractional integro-differentiation to Taylor series expansions near zero using Hadamard regularization and the use of the Meijer G-function for evaluating derivatives of complex orders. We conclude with a discussion on applying fractional integro-differentiation to “differential constants” and provide generic formulas for fractional differentiation. The extensive list of references underscores the vast body of works on fractional calculus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信