数据驱动的金属快速成型制造工艺-结构-性能关系建模

Zhaoyang Hu, Wentao Yan
{"title":"数据驱动的金属快速成型制造工艺-结构-性能关系建模","authors":"Zhaoyang Hu, Wentao Yan","doi":"10.1038/s44334-024-00003-y","DOIUrl":null,"url":null,"abstract":"Metal additive manufacturing (AM) faces challenges in rapid selection and optimization of manufacturing parameters for desired part quality. As a more efficient alternative to experiments and high-fidelity physics-based models, data-driven modeling is effective in understanding process–structure–property relationships. This brief review explores data-driven modeling in metal AM, focusing on “process”, “structure”, and “property”, further identifying limitations in current applications and accordingly presenting future outlook on the possible advancements in this domain.","PeriodicalId":501702,"journal":{"name":"npj Advanced Manufacturing","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44334-024-00003-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Data-driven modeling of process-structure-property relationships in metal additive manufacturing\",\"authors\":\"Zhaoyang Hu, Wentao Yan\",\"doi\":\"10.1038/s44334-024-00003-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal additive manufacturing (AM) faces challenges in rapid selection and optimization of manufacturing parameters for desired part quality. As a more efficient alternative to experiments and high-fidelity physics-based models, data-driven modeling is effective in understanding process–structure–property relationships. This brief review explores data-driven modeling in metal AM, focusing on “process”, “structure”, and “property”, further identifying limitations in current applications and accordingly presenting future outlook on the possible advancements in this domain.\",\"PeriodicalId\":501702,\"journal\":{\"name\":\"npj Advanced Manufacturing\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44334-024-00003-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Advanced Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44334-024-00003-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44334-024-00003-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属增材制造(AM)面临着快速选择和优化制造参数以获得理想零件质量的挑战。作为实验和高保真物理模型的一种更有效的替代方法,数据驱动建模在理解工艺-结构-性能关系方面非常有效。这篇简短的综述探讨了金属 AM 中的数据驱动建模,重点关注 "工艺"、"结构 "和 "属性",进一步确定了当前应用中的局限性,并相应地展望了该领域未来可能取得的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-driven modeling of process-structure-property relationships in metal additive manufacturing

Data-driven modeling of process-structure-property relationships in metal additive manufacturing
Metal additive manufacturing (AM) faces challenges in rapid selection and optimization of manufacturing parameters for desired part quality. As a more efficient alternative to experiments and high-fidelity physics-based models, data-driven modeling is effective in understanding process–structure–property relationships. This brief review explores data-driven modeling in metal AM, focusing on “process”, “structure”, and “property”, further identifying limitations in current applications and accordingly presenting future outlook on the possible advancements in this domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信