{"title":"新高速线路 RS2 VRT Jižní Morava 高架桥的初步设计","authors":"Samuel Franko, Martin Hukel","doi":"10.1002/cepa.3061","DOIUrl":null,"url":null,"abstract":"<p>The newly proposed high-speed rail in Czech Republic creates a set of new challenges for engineers in design overall. In this case, the most significant challenge was to design a viaduct over several obstacles due to the crossing of Special Area of Conservation (SAC), part of Natura 2000. This aims to limit impacts in short-term, during construction and more importantly in the long term. Construction of the viaduct will mitigate an impact to the natural surrounding area, whilst allowing immigration of its natural habitats. Nevertheless, the viaduct design and operational speeds will reach 320 km/h with possible raising to 350 km/h limit, with minimal impact within the area.</p><p>Initial length of the viaduct was over 1 300 m and the main requirement given by an infrastructure manager was to design a viaduct without railway expansion joints. Due to such a long distance, the viaduct had to be separated into several dilatation segments in order to avoid the use of rail expansion joint. The most susceptible parts of SAC were in proximity of the river Šatava and surrounding wetlands. This area created an obstacle, which had to be crossed by a long span avoiding the implementation of bridge piers. Poor geological conditions close to the watercourse had to be taken into consideration for design of pier foundation, therefore the span had to be shortened to a compromised length.</p><p>The final design of the viaduct consists of 16 segments, of which 14 are continuous segments and 4 are single spans. Overall, there are 29 spans over the length of the viaduct. Construction method of incremental launching had been chosen to reduce the short-term impact in the SAC.</p>","PeriodicalId":100223,"journal":{"name":"ce/papers","volume":"7 3-4","pages":"38-43"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary design of a viaduct on new Highspeed line RS2 VRT Jižní Morava\",\"authors\":\"Samuel Franko, Martin Hukel\",\"doi\":\"10.1002/cepa.3061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The newly proposed high-speed rail in Czech Republic creates a set of new challenges for engineers in design overall. In this case, the most significant challenge was to design a viaduct over several obstacles due to the crossing of Special Area of Conservation (SAC), part of Natura 2000. This aims to limit impacts in short-term, during construction and more importantly in the long term. Construction of the viaduct will mitigate an impact to the natural surrounding area, whilst allowing immigration of its natural habitats. Nevertheless, the viaduct design and operational speeds will reach 320 km/h with possible raising to 350 km/h limit, with minimal impact within the area.</p><p>Initial length of the viaduct was over 1 300 m and the main requirement given by an infrastructure manager was to design a viaduct without railway expansion joints. Due to such a long distance, the viaduct had to be separated into several dilatation segments in order to avoid the use of rail expansion joint. The most susceptible parts of SAC were in proximity of the river Šatava and surrounding wetlands. This area created an obstacle, which had to be crossed by a long span avoiding the implementation of bridge piers. Poor geological conditions close to the watercourse had to be taken into consideration for design of pier foundation, therefore the span had to be shortened to a compromised length.</p><p>The final design of the viaduct consists of 16 segments, of which 14 are continuous segments and 4 are single spans. Overall, there are 29 spans over the length of the viaduct. Construction method of incremental launching had been chosen to reduce the short-term impact in the SAC.</p>\",\"PeriodicalId\":100223,\"journal\":{\"name\":\"ce/papers\",\"volume\":\"7 3-4\",\"pages\":\"38-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ce/papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ce/papers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preliminary design of a viaduct on new Highspeed line RS2 VRT Jižní Morava
The newly proposed high-speed rail in Czech Republic creates a set of new challenges for engineers in design overall. In this case, the most significant challenge was to design a viaduct over several obstacles due to the crossing of Special Area of Conservation (SAC), part of Natura 2000. This aims to limit impacts in short-term, during construction and more importantly in the long term. Construction of the viaduct will mitigate an impact to the natural surrounding area, whilst allowing immigration of its natural habitats. Nevertheless, the viaduct design and operational speeds will reach 320 km/h with possible raising to 350 km/h limit, with minimal impact within the area.
Initial length of the viaduct was over 1 300 m and the main requirement given by an infrastructure manager was to design a viaduct without railway expansion joints. Due to such a long distance, the viaduct had to be separated into several dilatation segments in order to avoid the use of rail expansion joint. The most susceptible parts of SAC were in proximity of the river Šatava and surrounding wetlands. This area created an obstacle, which had to be crossed by a long span avoiding the implementation of bridge piers. Poor geological conditions close to the watercourse had to be taken into consideration for design of pier foundation, therefore the span had to be shortened to a compromised length.
The final design of the viaduct consists of 16 segments, of which 14 are continuous segments and 4 are single spans. Overall, there are 29 spans over the length of the viaduct. Construction method of incremental launching had been chosen to reduce the short-term impact in the SAC.