GaitFFDA:特征融合与双重注意力步态识别模型

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Zhixiong Wu;Yong Cui
{"title":"GaitFFDA:特征融合与双重注意力步态识别模型","authors":"Zhixiong Wu;Yong Cui","doi":"10.26599/TST.2023.9010089","DOIUrl":null,"url":null,"abstract":"Gait recognition has a wide range of application scenarios in the fields of intelligent security and transportation. Gait recognition currently faces challenges: inadequate feature methods for environmental interferences and insufficient local-global information correlation. To address these issues, we propose a gait recognition model based on feature fusion and dual attention. Our model utilizes the ResNet architecture as the backbone network for fundamental gait features extraction. Subsequently, the features from different network layers are passed through the feature pyramid for feature fusion, so that multi-scale local information can be fused into global information, providing a more complete feature representation. The dual attention module enhances the fused features in multiple dimensions, enabling the model to capture information from different semantics and scale information. Our model proves effective and competitive results on CASIA-B (NM: 95.6%, BG: 90.9%, CL: 73.7%) and OU-MVLP (88.1%). The results of related ablation experiments show that the model design is effective and has strong competitiveness.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 1","pages":"345-356"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10676356","citationCount":"0","resultStr":"{\"title\":\"GaitFFDA: Feature Fusion and Dual Attention Gait Recognition Model\",\"authors\":\"Zhixiong Wu;Yong Cui\",\"doi\":\"10.26599/TST.2023.9010089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait recognition has a wide range of application scenarios in the fields of intelligent security and transportation. Gait recognition currently faces challenges: inadequate feature methods for environmental interferences and insufficient local-global information correlation. To address these issues, we propose a gait recognition model based on feature fusion and dual attention. Our model utilizes the ResNet architecture as the backbone network for fundamental gait features extraction. Subsequently, the features from different network layers are passed through the feature pyramid for feature fusion, so that multi-scale local information can be fused into global information, providing a more complete feature representation. The dual attention module enhances the fused features in multiple dimensions, enabling the model to capture information from different semantics and scale information. Our model proves effective and competitive results on CASIA-B (NM: 95.6%, BG: 90.9%, CL: 73.7%) and OU-MVLP (88.1%). The results of related ablation experiments show that the model design is effective and has strong competitiveness.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"30 1\",\"pages\":\"345-356\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10676356\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10676356/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10676356/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

步态识别在智能安防和交通领域有着广泛的应用场景。步态识别目前面临的挑战是:针对环境干扰的特征方法不足,局部与全局信息关联性不够。为了解决这些问题,我们提出了一种基于特征融合和双重关注的步态识别模型。我们的模型利用 ResNet 架构作为提取基本步态特征的骨干网络。随后,来自不同网络层的特征通过特征金字塔进行特征融合,从而将多尺度局部信息融合为全局信息,提供更完整的特征表示。双重关注模块从多个维度增强融合后的特征,使模型能够捕捉不同语义和尺度信息。我们的模型在 CASIA-B(NM:95.6%;BG:90.9%;CL:73.7%)和 OU-MVLP (88.1%)上取得了有效且具有竞争力的结果。相关的消融实验结果表明,模型设计是有效的,具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GaitFFDA: Feature Fusion and Dual Attention Gait Recognition Model
Gait recognition has a wide range of application scenarios in the fields of intelligent security and transportation. Gait recognition currently faces challenges: inadequate feature methods for environmental interferences and insufficient local-global information correlation. To address these issues, we propose a gait recognition model based on feature fusion and dual attention. Our model utilizes the ResNet architecture as the backbone network for fundamental gait features extraction. Subsequently, the features from different network layers are passed through the feature pyramid for feature fusion, so that multi-scale local information can be fused into global information, providing a more complete feature representation. The dual attention module enhances the fused features in multiple dimensions, enabling the model to capture information from different semantics and scale information. Our model proves effective and competitive results on CASIA-B (NM: 95.6%, BG: 90.9%, CL: 73.7%) and OU-MVLP (88.1%). The results of related ablation experiments show that the model design is effective and has strong competitiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信