Pan Li;Kai Di;Xinlei Bai;Fulin Chen;Yuanshuang Jiang;Xiping Fu;Yichuan Jiang
{"title":"多路复用网络产业链中的使用时间价格资源调度","authors":"Pan Li;Kai Di;Xinlei Bai;Fulin Chen;Yuanshuang Jiang;Xiping Fu;Yichuan Jiang","doi":"10.26599/TST.2024.9010012","DOIUrl":null,"url":null,"abstract":"With the advancement of electronic information technology and the growth of the intelligent industry, the industrial sector has undergone a shift from simplex, linear, and vertical chains to complex, multi-level, and multi-dimensional networked industrial chains. In order to enhance energy efficiency in multiplex networked industrial chains under time-of-use price, a coarse time granularity task scheduling approach has been adopted. This approach adjusts the distribution of electricity supply based on task deadlines, dividing it into longer periods to facilitate batch access to task information. However, traditional simplex-network task assignment optimization methods are unable to achieve a globally optimal solution for cross-layer links in multiplex networked industrial chains. Existing solutions struggle to balance execution costs and completion efficiency in time-of-use price scenarios. Therefore, this paper presents a mixed-integer linear programming model for solving the problem scenario and two algorithms: an exact algorithm based on the branch-and-bound method and a multi-objective heuristic algorithm based on cross-layer policy propagation. These algorithms are designed to adapt to small-scale and large-scale problem scenarios under coarse time granularity. Through extensive simulation experiments and theoretical analysis, the proposed methods effectively optimize the energy and time costs associated with the task execution.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 1","pages":"303-317"},"PeriodicalIF":6.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10507222","citationCount":"0","resultStr":"{\"title\":\"Time-of-Use Price Resource Scheduling in Multiplex Networked Industrial Chains\",\"authors\":\"Pan Li;Kai Di;Xinlei Bai;Fulin Chen;Yuanshuang Jiang;Xiping Fu;Yichuan Jiang\",\"doi\":\"10.26599/TST.2024.9010012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of electronic information technology and the growth of the intelligent industry, the industrial sector has undergone a shift from simplex, linear, and vertical chains to complex, multi-level, and multi-dimensional networked industrial chains. In order to enhance energy efficiency in multiplex networked industrial chains under time-of-use price, a coarse time granularity task scheduling approach has been adopted. This approach adjusts the distribution of electricity supply based on task deadlines, dividing it into longer periods to facilitate batch access to task information. However, traditional simplex-network task assignment optimization methods are unable to achieve a globally optimal solution for cross-layer links in multiplex networked industrial chains. Existing solutions struggle to balance execution costs and completion efficiency in time-of-use price scenarios. Therefore, this paper presents a mixed-integer linear programming model for solving the problem scenario and two algorithms: an exact algorithm based on the branch-and-bound method and a multi-objective heuristic algorithm based on cross-layer policy propagation. These algorithms are designed to adapt to small-scale and large-scale problem scenarios under coarse time granularity. Through extensive simulation experiments and theoretical analysis, the proposed methods effectively optimize the energy and time costs associated with the task execution.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"30 1\",\"pages\":\"303-317\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10507222\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10507222/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10507222/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Time-of-Use Price Resource Scheduling in Multiplex Networked Industrial Chains
With the advancement of electronic information technology and the growth of the intelligent industry, the industrial sector has undergone a shift from simplex, linear, and vertical chains to complex, multi-level, and multi-dimensional networked industrial chains. In order to enhance energy efficiency in multiplex networked industrial chains under time-of-use price, a coarse time granularity task scheduling approach has been adopted. This approach adjusts the distribution of electricity supply based on task deadlines, dividing it into longer periods to facilitate batch access to task information. However, traditional simplex-network task assignment optimization methods are unable to achieve a globally optimal solution for cross-layer links in multiplex networked industrial chains. Existing solutions struggle to balance execution costs and completion efficiency in time-of-use price scenarios. Therefore, this paper presents a mixed-integer linear programming model for solving the problem scenario and two algorithms: an exact algorithm based on the branch-and-bound method and a multi-objective heuristic algorithm based on cross-layer policy propagation. These algorithms are designed to adapt to small-scale and large-scale problem scenarios under coarse time granularity. Through extensive simulation experiments and theoretical analysis, the proposed methods effectively optimize the energy and time costs associated with the task execution.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.