{"title":"固结承载土工织物管的分析模型和应力行为","authors":"","doi":"10.1016/j.geotexmem.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately predicting stress-strain characteristics is crucial to ensuring the regulated capacity and controlled deformation of the tubes during and after construction. However, research on the shear strength of geotextile tubes under surcharge loading, especially after dewatering, is insufficient. This study proposes an analytical model with a Stress-State Boundary (SSB) and Yield Function to comprehensively describe the stress-strain behavior of Load-Bearing Geotextile Tubes (LGTs). The SSB is designed to predict the initial state of stress in the infill soil prior to load application, while the Yield Function is formulated to express the shear stress path experienced by the LGT before fabric failure. The model considers various factors that affect LGT behavior, including diverse soil mechanical parameters, nonlinear fabric stiffness, initial tension due to self-weight and principal stress axes rotation. Results show that a decrease in Poisson's ratio corresponds to an increase in failure stress. Moreover, it was demonstrated that the axial failure strain can be influenced by the geotextile linear or nonlinear behavior. Notably, the study highlights that tube height and inclination angle significantly affect the geotextile's confining effect. Beyond theoretical contributions, the analytical model serves as a valuable tool for optimizing geotextile tube design and execution, contributing to project success and longevity through enhanced structural stability.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical model and stress behavior of consolidated load bearing geotextile tubes\",\"authors\":\"\",\"doi\":\"10.1016/j.geotexmem.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurately predicting stress-strain characteristics is crucial to ensuring the regulated capacity and controlled deformation of the tubes during and after construction. However, research on the shear strength of geotextile tubes under surcharge loading, especially after dewatering, is insufficient. This study proposes an analytical model with a Stress-State Boundary (SSB) and Yield Function to comprehensively describe the stress-strain behavior of Load-Bearing Geotextile Tubes (LGTs). The SSB is designed to predict the initial state of stress in the infill soil prior to load application, while the Yield Function is formulated to express the shear stress path experienced by the LGT before fabric failure. The model considers various factors that affect LGT behavior, including diverse soil mechanical parameters, nonlinear fabric stiffness, initial tension due to self-weight and principal stress axes rotation. Results show that a decrease in Poisson's ratio corresponds to an increase in failure stress. Moreover, it was demonstrated that the axial failure strain can be influenced by the geotextile linear or nonlinear behavior. Notably, the study highlights that tube height and inclination angle significantly affect the geotextile's confining effect. Beyond theoretical contributions, the analytical model serves as a valuable tool for optimizing geotextile tube design and execution, contributing to project success and longevity through enhanced structural stability.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424001055\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424001055","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Analytical model and stress behavior of consolidated load bearing geotextile tubes
Accurately predicting stress-strain characteristics is crucial to ensuring the regulated capacity and controlled deformation of the tubes during and after construction. However, research on the shear strength of geotextile tubes under surcharge loading, especially after dewatering, is insufficient. This study proposes an analytical model with a Stress-State Boundary (SSB) and Yield Function to comprehensively describe the stress-strain behavior of Load-Bearing Geotextile Tubes (LGTs). The SSB is designed to predict the initial state of stress in the infill soil prior to load application, while the Yield Function is formulated to express the shear stress path experienced by the LGT before fabric failure. The model considers various factors that affect LGT behavior, including diverse soil mechanical parameters, nonlinear fabric stiffness, initial tension due to self-weight and principal stress axes rotation. Results show that a decrease in Poisson's ratio corresponds to an increase in failure stress. Moreover, it was demonstrated that the axial failure strain can be influenced by the geotextile linear or nonlinear behavior. Notably, the study highlights that tube height and inclination angle significantly affect the geotextile's confining effect. Beyond theoretical contributions, the analytical model serves as a valuable tool for optimizing geotextile tube design and execution, contributing to project success and longevity through enhanced structural stability.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.