Xiaogang Xing , Ming Xu , Yujing Bai , Dongdong Yang
{"title":"节点分类任务中的清洁标签图后门攻击方法","authors":"Xiaogang Xing , Ming Xu , Yujing Bai , Dongdong Yang","doi":"10.1016/j.knosys.2024.112433","DOIUrl":null,"url":null,"abstract":"<div><p>Backdoor attacks in the traditional graph neural networks (GNNs) field are easily detectable due to the dilemma of confusing labels. To explore the backdoor vulnerability of GNNs and create a more stealthy backdoor attack method, a clean-label graph backdoor attack method(CGBA) in the node classification task is proposed in this paper. Differently from existing backdoor attack methods, CGBA requires neither modification of node labels nor graph structure. Specifically, to solve the problem of inconsistency between the contents and labels of the samples, CGBA selects poisoning samples in a specific target class and uses the samples’ own label as the target label (i.e., clean-label) after injecting triggers into the target samples. To guarantee the similarity of neighboring nodes, the raw features of the nodes are elaborately picked as triggers to further improve the concealment of the triggers. Extensive experiments results show the effectiveness of our method. When the poisoning rate is 0.04, CGBA can achieve an average attack success rate of 87.8%, 98.9%, 89.1%, and 98.5%, respectively.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Clean-Label Graph Backdoor Attack Method in Node Classification Task\",\"authors\":\"Xiaogang Xing , Ming Xu , Yujing Bai , Dongdong Yang\",\"doi\":\"10.1016/j.knosys.2024.112433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Backdoor attacks in the traditional graph neural networks (GNNs) field are easily detectable due to the dilemma of confusing labels. To explore the backdoor vulnerability of GNNs and create a more stealthy backdoor attack method, a clean-label graph backdoor attack method(CGBA) in the node classification task is proposed in this paper. Differently from existing backdoor attack methods, CGBA requires neither modification of node labels nor graph structure. Specifically, to solve the problem of inconsistency between the contents and labels of the samples, CGBA selects poisoning samples in a specific target class and uses the samples’ own label as the target label (i.e., clean-label) after injecting triggers into the target samples. To guarantee the similarity of neighboring nodes, the raw features of the nodes are elaborately picked as triggers to further improve the concealment of the triggers. Extensive experiments results show the effectiveness of our method. When the poisoning rate is 0.04, CGBA can achieve an average attack success rate of 87.8%, 98.9%, 89.1%, and 98.5%, respectively.</p></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124010670\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124010670","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Clean-Label Graph Backdoor Attack Method in Node Classification Task
Backdoor attacks in the traditional graph neural networks (GNNs) field are easily detectable due to the dilemma of confusing labels. To explore the backdoor vulnerability of GNNs and create a more stealthy backdoor attack method, a clean-label graph backdoor attack method(CGBA) in the node classification task is proposed in this paper. Differently from existing backdoor attack methods, CGBA requires neither modification of node labels nor graph structure. Specifically, to solve the problem of inconsistency between the contents and labels of the samples, CGBA selects poisoning samples in a specific target class and uses the samples’ own label as the target label (i.e., clean-label) after injecting triggers into the target samples. To guarantee the similarity of neighboring nodes, the raw features of the nodes are elaborately picked as triggers to further improve the concealment of the triggers. Extensive experiments results show the effectiveness of our method. When the poisoning rate is 0.04, CGBA can achieve an average attack success rate of 87.8%, 98.9%, 89.1%, and 98.5%, respectively.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.