基于矩阵轮廓的多维时间序列主题组发现

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Danyang Cao, Zifeng Lin
{"title":"基于矩阵轮廓的多维时间序列主题组发现","authors":"Danyang Cao,&nbsp;Zifeng Lin","doi":"10.1016/j.knosys.2024.112509","DOIUrl":null,"url":null,"abstract":"<div><p>With the continuous advancements in sensor technology and the increasing capabilities for data collection and storage, the acquisition of time series data across diverse domains has become significantly easier. Consequently, there is a growing demand for identifying potential motifs within multidimensional time series. The introduction of the Matrix Profile (MP) structure and the mSTOMP algorithm enables the detection of multidimensional motifs in large-scale time series datasets. However, the Matrix Profile (MP) does not provide information regarding the frequency of occurrence of these motifs. As a result, it is challenging to determine whether a motif appears frequently or to identify the specific time periods during which it typically occurs, thereby limiting further analysis of the discovered motifs. To address this limitation, we proposed Index Link Motif Group Discovery (ILMGD) algorithm, which uses index linking to rapidly merge and group multidimensional motifs. Based on the results of the ILMGD algorithm, we can determine the frequency and temporal positions of motifs, facilitating deeper analysis. Our proposed method requires minimal additional parameters and reduces the need for extensive manual intervention. We validate the effectiveness of our algorithm on synthetic datasets and demonstrate its applicability on three real-world datasets, highlighting how it enables a comprehensive understanding of the discovered motifs.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional time series motif group discovery based on matrix profile\",\"authors\":\"Danyang Cao,&nbsp;Zifeng Lin\",\"doi\":\"10.1016/j.knosys.2024.112509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the continuous advancements in sensor technology and the increasing capabilities for data collection and storage, the acquisition of time series data across diverse domains has become significantly easier. Consequently, there is a growing demand for identifying potential motifs within multidimensional time series. The introduction of the Matrix Profile (MP) structure and the mSTOMP algorithm enables the detection of multidimensional motifs in large-scale time series datasets. However, the Matrix Profile (MP) does not provide information regarding the frequency of occurrence of these motifs. As a result, it is challenging to determine whether a motif appears frequently or to identify the specific time periods during which it typically occurs, thereby limiting further analysis of the discovered motifs. To address this limitation, we proposed Index Link Motif Group Discovery (ILMGD) algorithm, which uses index linking to rapidly merge and group multidimensional motifs. Based on the results of the ILMGD algorithm, we can determine the frequency and temporal positions of motifs, facilitating deeper analysis. Our proposed method requires minimal additional parameters and reduces the need for extensive manual intervention. We validate the effectiveness of our algorithm on synthetic datasets and demonstrate its applicability on three real-world datasets, highlighting how it enables a comprehensive understanding of the discovered motifs.</p></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124011432\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124011432","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着传感器技术的不断进步以及数据收集和存储能力的不断提高,获取不同领域的时间序列数据变得更加容易。因此,在多维时间序列中识别潜在主题的需求日益增长。矩阵剖面(MP)结构和 mSTOMP 算法的引入使得在大规模时间序列数据集中检测多维图案成为可能。然而,矩阵剖面图(MP)并不提供有关这些图案出现频率的信息。因此,要确定某个主题是否经常出现或确定其通常出现的具体时间段非常困难,从而限制了对已发现主题的进一步分析。为了解决这一局限性,我们提出了索引链接图案组发现(ILMGD)算法,该算法利用索引链接快速合并和分组多维图案。根据 ILMGD 算法的结果,我们可以确定图案的频率和时间位置,从而便于进行更深入的分析。我们提出的方法只需极少的附加参数,减少了大量人工干预的需要。我们在合成数据集上验证了该算法的有效性,并在三个真实世界数据集上演示了该算法的适用性,重点介绍了该算法如何实现对已发现主题的全面理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multidimensional time series motif group discovery based on matrix profile

With the continuous advancements in sensor technology and the increasing capabilities for data collection and storage, the acquisition of time series data across diverse domains has become significantly easier. Consequently, there is a growing demand for identifying potential motifs within multidimensional time series. The introduction of the Matrix Profile (MP) structure and the mSTOMP algorithm enables the detection of multidimensional motifs in large-scale time series datasets. However, the Matrix Profile (MP) does not provide information regarding the frequency of occurrence of these motifs. As a result, it is challenging to determine whether a motif appears frequently or to identify the specific time periods during which it typically occurs, thereby limiting further analysis of the discovered motifs. To address this limitation, we proposed Index Link Motif Group Discovery (ILMGD) algorithm, which uses index linking to rapidly merge and group multidimensional motifs. Based on the results of the ILMGD algorithm, we can determine the frequency and temporal positions of motifs, facilitating deeper analysis. Our proposed method requires minimal additional parameters and reduces the need for extensive manual intervention. We validate the effectiveness of our algorithm on synthetic datasets and demonstrate its applicability on three real-world datasets, highlighting how it enables a comprehensive understanding of the discovered motifs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信