通过移动性的真实向量空间表示,为生成式设计应用提供快速移动性分析

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Guilain Lang , Julien Rouvinet
{"title":"通过移动性的真实向量空间表示,为生成式设计应用提供快速移动性分析","authors":"Guilain Lang ,&nbsp;Julien Rouvinet","doi":"10.1016/j.mechmachtheory.2024.105790","DOIUrl":null,"url":null,"abstract":"<div><p>During the early stages of design, mechanisms are commonly modeled as perfect joints assembled with infinitely rigid bodies. This representation enables the prediction of the system’s mobilities through a mobility analysis. However, traditional mobility analysis tools can be computationally expensive or lack critical information, such as the type or direction of mobilities. It hinders the generation of topology and configuration through generative design schemes.</p><p>In this paper, we propose an alternative approach to mobility analysis based on a real vector space representation of mobilities. Our method provides relevant information for early design steps while being computationally effective through a novel formulation of series and parallel assembly topological operations. A benchmark on four selected use cases highlights an acceleration of 3 to 4 orders of magnitude compared to traditional approaches. Additionally, design rules on the joints’ positions can be automatically generated with our approach. It enables the automation of the complete design process, including topology and configuration. As such, we provide guidelines to develop a generative design scheme dedicated to the synthesis of guiding mechanisms.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105790"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0094114X24002179/pdfft?md5=707d548a4597f571ad66ed948b72d5ec&pid=1-s2.0-S0094114X24002179-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fast mobility analysis for generative design applications through a real vector space representation of mobilities\",\"authors\":\"Guilain Lang ,&nbsp;Julien Rouvinet\",\"doi\":\"10.1016/j.mechmachtheory.2024.105790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During the early stages of design, mechanisms are commonly modeled as perfect joints assembled with infinitely rigid bodies. This representation enables the prediction of the system’s mobilities through a mobility analysis. However, traditional mobility analysis tools can be computationally expensive or lack critical information, such as the type or direction of mobilities. It hinders the generation of topology and configuration through generative design schemes.</p><p>In this paper, we propose an alternative approach to mobility analysis based on a real vector space representation of mobilities. Our method provides relevant information for early design steps while being computationally effective through a novel formulation of series and parallel assembly topological operations. A benchmark on four selected use cases highlights an acceleration of 3 to 4 orders of magnitude compared to traditional approaches. Additionally, design rules on the joints’ positions can be automatically generated with our approach. It enables the automation of the complete design process, including topology and configuration. As such, we provide guidelines to develop a generative design scheme dedicated to the synthesis of guiding mechanisms.</p></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"203 \",\"pages\":\"Article 105790\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24002179/pdfft?md5=707d548a4597f571ad66ed948b72d5ec&pid=1-s2.0-S0094114X24002179-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24002179\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002179","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在设计的早期阶段,机械装置通常被建模为由无限刚性体组装而成的完美关节。通过这种表示方法,可以通过流动性分析预测系统的流动性。然而,传统的流动性分析工具计算成本高昂,或缺乏关键信息,如流动性的类型或方向。在本文中,我们提出了另一种基于真实移动性向量空间表示的移动性分析方法。我们的方法为早期设计步骤提供了相关信息,同时通过新颖的串联和并联装配拓扑操作,提高了计算效率。四个选定使用案例的基准测试表明,与传统方法相比,我们的计算速度提高了 3 到 4 个数量级。此外,我们的方法还能自动生成关节位置的设计规则。这使得包括拓扑和配置在内的整个设计过程实现了自动化。因此,我们为开发专门用于合成导向机构的生成式设计方案提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast mobility analysis for generative design applications through a real vector space representation of mobilities

During the early stages of design, mechanisms are commonly modeled as perfect joints assembled with infinitely rigid bodies. This representation enables the prediction of the system’s mobilities through a mobility analysis. However, traditional mobility analysis tools can be computationally expensive or lack critical information, such as the type or direction of mobilities. It hinders the generation of topology and configuration through generative design schemes.

In this paper, we propose an alternative approach to mobility analysis based on a real vector space representation of mobilities. Our method provides relevant information for early design steps while being computationally effective through a novel formulation of series and parallel assembly topological operations. A benchmark on four selected use cases highlights an acceleration of 3 to 4 orders of magnitude compared to traditional approaches. Additionally, design rules on the joints’ positions can be automatically generated with our approach. It enables the automation of the complete design process, including topology and configuration. As such, we provide guidelines to develop a generative design scheme dedicated to the synthesis of guiding mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信