放射肿瘤学团队基础与转化科学的未来

IF 2.6 3区 医学 Q3 ONCOLOGY
{"title":"放射肿瘤学团队基础与转化科学的未来","authors":"","doi":"10.1016/j.semradonc.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><p>To further optimize radiotherapy, a more personalized treatment towards individual patient's risk profiles, dissecting both patient-specific tumor and normal tissue response to multimodality treatments is needed. Novel developments in radiobiology, using in vitro patient-specific complex tissue resembling 3D models and multiomics approaches at a spatial single-cell level, may provide unprecedented insight into the radiation responses of tumors and normal tissue. Here, we describe the necessary team effort, including all disciplines in radiation oncology, to integrate such data into clinical prediction models and link the relatively \"big data\" from the clinical practice, allowing accurate patient stratification for personalized treatment approaches.</p></div>","PeriodicalId":49542,"journal":{"name":"Seminars in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1053429624000584/pdfft?md5=25386a67713f626e3129cd01445748d2&pid=1-s2.0-S1053429624000584-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Future of Team-based Basic and Translational Science in Radiation Oncology\",\"authors\":\"\",\"doi\":\"10.1016/j.semradonc.2024.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To further optimize radiotherapy, a more personalized treatment towards individual patient's risk profiles, dissecting both patient-specific tumor and normal tissue response to multimodality treatments is needed. Novel developments in radiobiology, using in vitro patient-specific complex tissue resembling 3D models and multiomics approaches at a spatial single-cell level, may provide unprecedented insight into the radiation responses of tumors and normal tissue. Here, we describe the necessary team effort, including all disciplines in radiation oncology, to integrate such data into clinical prediction models and link the relatively \\\"big data\\\" from the clinical practice, allowing accurate patient stratification for personalized treatment approaches.</p></div>\",\"PeriodicalId\":49542,\"journal\":{\"name\":\"Seminars in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1053429624000584/pdfft?md5=25386a67713f626e3129cd01445748d2&pid=1-s2.0-S1053429624000584-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in Radiation Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053429624000584\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053429624000584","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了进一步优化放射治疗,需要根据患者的个体风险特征进行更加个性化的治疗,剖析患者特异性肿瘤和正常组织对多模式治疗的反应。放射生物学的新发展,利用体外患者特异性复杂组织类似三维模型和空间单细胞水平的多组学方法,可以为肿瘤和正常组织的辐射反应提供前所未有的洞察力。在此,我们将介绍包括放射肿瘤学所有学科在内的必要团队工作,以便将这些数据整合到临床预测模型中,并将临床实践中的相对 "大数据 "联系起来,从而为个性化治疗方法提供准确的患者分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Future of Team-based Basic and Translational Science in Radiation Oncology

To further optimize radiotherapy, a more personalized treatment towards individual patient's risk profiles, dissecting both patient-specific tumor and normal tissue response to multimodality treatments is needed. Novel developments in radiobiology, using in vitro patient-specific complex tissue resembling 3D models and multiomics approaches at a spatial single-cell level, may provide unprecedented insight into the radiation responses of tumors and normal tissue. Here, we describe the necessary team effort, including all disciplines in radiation oncology, to integrate such data into clinical prediction models and link the relatively "big data" from the clinical practice, allowing accurate patient stratification for personalized treatment approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
48
审稿时长
>12 weeks
期刊介绍: Each issue of Seminars in Radiation Oncology is compiled by a guest editor to address a specific topic in the specialty, presenting definitive information on areas of rapid change and development. A significant number of articles report new scientific information. Topics covered include tumor biology, diagnosis, medical and surgical management of the patient, and new technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信