含零的有限集是映射度集

IF 1.5 1区 数学 Q1 MATHEMATICS
Cristina Costoya , Vicente Muñoz , Antonio Viruel
{"title":"含零的有限集是映射度集","authors":"Cristina Costoya ,&nbsp;Vicente Muñoz ,&nbsp;Antonio Viruel","doi":"10.1016/j.aim.2024.109942","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we solve in the positive the question of whether any finite set of integers, containing 0, is the mapping degree set between two oriented closed connected manifolds of the same dimension. We extend this question to the rational setting, where an affirmative answer is also given.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109942"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004572/pdfft?md5=ef51c4901c7fe1d7dbb8717264ee2948&pid=1-s2.0-S0001870824004572-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Finite sets containing zero are mapping degree sets\",\"authors\":\"Cristina Costoya ,&nbsp;Vicente Muñoz ,&nbsp;Antonio Viruel\",\"doi\":\"10.1016/j.aim.2024.109942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we solve in the positive the question of whether any finite set of integers, containing 0, is the mapping degree set between two oriented closed connected manifolds of the same dimension. We extend this question to the rational setting, where an affirmative answer is also given.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109942\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004572/pdfft?md5=ef51c4901c7fe1d7dbb8717264ee2948&pid=1-s2.0-S0001870824004572-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004572\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004572","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们从正面解决了这样一个问题:是否任何包含 0 的有限整数集都是两个同维度的定向闭合连通流形之间的映射度集。我们把这个问题扩展到有理集合,也给出了肯定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite sets containing zero are mapping degree sets

In this paper we solve in the positive the question of whether any finite set of integers, containing 0, is the mapping degree set between two oriented closed connected manifolds of the same dimension. We extend this question to the rational setting, where an affirmative answer is also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信