{"title":"全等数曲线上积分点的平均数","authors":"Stephanie Chan","doi":"10.1016/j.aim.2024.109946","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the total number of non-torsion integral points on the elliptic curves <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi></math></span>, where <em>D</em> ranges over positive squarefree integers less than <em>N</em>, is <span><math><mi>O</mi><mo>(</mo><mi>N</mi><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>+</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></math></span>. The proof involves a discriminant-lowering procedure on integral binary quartic forms and an application of Heath-Brown's method on estimating the average size of the 2-Selmer groups of the curves in this family.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109946"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004614/pdfft?md5=e61e01dc3d1a09b4e1bf01af1246df6b&pid=1-s2.0-S0001870824004614-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The average number of integral points on the congruent number curves\",\"authors\":\"Stephanie Chan\",\"doi\":\"10.1016/j.aim.2024.109946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the total number of non-torsion integral points on the elliptic curves <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi></math></span>, where <em>D</em> ranges over positive squarefree integers less than <em>N</em>, is <span><math><mi>O</mi><mo>(</mo><mi>N</mi><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>+</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></math></span>. The proof involves a discriminant-lowering procedure on integral binary quartic forms and an application of Heath-Brown's method on estimating the average size of the 2-Selmer groups of the curves in this family.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109946\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004614/pdfft?md5=e61e01dc3d1a09b4e1bf01af1246df6b&pid=1-s2.0-S0001870824004614-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004614\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004614","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了椭圆曲线 ED:y2=x3-D2x 上的非扭转积分点总数为 O(N(logN)-14+ϵ),其中 D 的范围是小于 N 的无平方正整数。证明涉及积分二元四元形式的判别降维过程,以及应用希斯-布朗方法估计该族曲线的 2 塞尔默群的平均大小。
The average number of integral points on the congruent number curves
We show that the total number of non-torsion integral points on the elliptic curves , where D ranges over positive squarefree integers less than N, is . The proof involves a discriminant-lowering procedure on integral binary quartic forms and an application of Heath-Brown's method on estimating the average size of the 2-Selmer groups of the curves in this family.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.