全等数曲线上积分点的平均数

IF 1.5 1区 数学 Q1 MATHEMATICS
Stephanie Chan
{"title":"全等数曲线上积分点的平均数","authors":"Stephanie Chan","doi":"10.1016/j.aim.2024.109946","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the total number of non-torsion integral points on the elliptic curves <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi></math></span>, where <em>D</em> ranges over positive squarefree integers less than <em>N</em>, is <span><math><mi>O</mi><mo>(</mo><mi>N</mi><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>+</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></math></span>. The proof involves a discriminant-lowering procedure on integral binary quartic forms and an application of Heath-Brown's method on estimating the average size of the 2-Selmer groups of the curves in this family.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109946"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004614/pdfft?md5=e61e01dc3d1a09b4e1bf01af1246df6b&pid=1-s2.0-S0001870824004614-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The average number of integral points on the congruent number curves\",\"authors\":\"Stephanie Chan\",\"doi\":\"10.1016/j.aim.2024.109946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the total number of non-torsion integral points on the elliptic curves <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi></math></span>, where <em>D</em> ranges over positive squarefree integers less than <em>N</em>, is <span><math><mi>O</mi><mo>(</mo><mi>N</mi><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>+</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></math></span>. The proof involves a discriminant-lowering procedure on integral binary quartic forms and an application of Heath-Brown's method on estimating the average size of the 2-Selmer groups of the curves in this family.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109946\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004614/pdfft?md5=e61e01dc3d1a09b4e1bf01af1246df6b&pid=1-s2.0-S0001870824004614-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004614\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004614","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了椭圆曲线 ED:y2=x3-D2x 上的非扭转积分点总数为 O(N(logN)-14+ϵ),其中 D 的范围是小于 N 的无平方正整数。证明涉及积分二元四元形式的判别降维过程,以及应用希斯-布朗方法估计该族曲线的 2 塞尔默群的平均大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The average number of integral points on the congruent number curves

We show that the total number of non-torsion integral points on the elliptic curves ED:y2=x3D2x, where D ranges over positive squarefree integers less than N, is O(N(logN)14+ϵ). The proof involves a discriminant-lowering procedure on integral binary quartic forms and an application of Heath-Brown's method on estimating the average size of the 2-Selmer groups of the curves in this family.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信