受控扭转扑动下叶片级联的广泛研究:流动动力学和稳定性分析

IF 2.5 3区 工程技术 Q2 MECHANICS
Pavel Procházka, Pavel Šnábl, Sony Chindada, Chandra Shekhar Prasad, Václav Uruba, Luděk Pešek
{"title":"受控扭转扑动下叶片级联的广泛研究:流动动力学和稳定性分析","authors":"Pavel Procházka,&nbsp;Pavel Šnábl,&nbsp;Sony Chindada,&nbsp;Chandra Shekhar Prasad,&nbsp;Václav Uruba,&nbsp;Luděk Pešek","doi":"10.1016/j.euromechflu.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>The experimental and numerical investigation of the flow instabilities acting on rigid blades and vice versa was conducted for both compressor and turbine configuration. The blade cascade consisted of five rectangular NACA 0010 blades, with three middle blades capable of performing harmonic motion with one degree of freedom (pitching) using force excitation. The base case (all blades fixed) and excited regime were examined. The influence of various angles of attack, harmonic frequency values, amplitude values, inter-blade phase angles and Reynolds numbers (Re) were tested. The mean flow properties as well as the fluid - structure interaction (FSI) were studied using Particle Image Velocimetry (PIV), Reynolds-averaged Navier-Stokes (RANS) CFD methods and using force measurement. Additionally, two different approaches, namely traveling wave mode (TWM) and aerodynamic influence coefficient (AIC), were adopted to estimate the aeroelastic stability of the blade cascade, and the results were compared. The results show significant aeroelastic coupling between the blades in both compressor and turbine configuration. However, the aerodynamic coupling effect for torsional flutter is more prominent in turbine configuration.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"109 ","pages":"Pages 66-79"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The broad study of blade cascade under controlled torsional flutter: Dynamics of the flow and stability analysis\",\"authors\":\"Pavel Procházka,&nbsp;Pavel Šnábl,&nbsp;Sony Chindada,&nbsp;Chandra Shekhar Prasad,&nbsp;Václav Uruba,&nbsp;Luděk Pešek\",\"doi\":\"10.1016/j.euromechflu.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The experimental and numerical investigation of the flow instabilities acting on rigid blades and vice versa was conducted for both compressor and turbine configuration. The blade cascade consisted of five rectangular NACA 0010 blades, with three middle blades capable of performing harmonic motion with one degree of freedom (pitching) using force excitation. The base case (all blades fixed) and excited regime were examined. The influence of various angles of attack, harmonic frequency values, amplitude values, inter-blade phase angles and Reynolds numbers (Re) were tested. The mean flow properties as well as the fluid - structure interaction (FSI) were studied using Particle Image Velocimetry (PIV), Reynolds-averaged Navier-Stokes (RANS) CFD methods and using force measurement. Additionally, two different approaches, namely traveling wave mode (TWM) and aerodynamic influence coefficient (AIC), were adopted to estimate the aeroelastic stability of the blade cascade, and the results were compared. The results show significant aeroelastic coupling between the blades in both compressor and turbine configuration. However, the aerodynamic coupling effect for torsional flutter is more prominent in turbine configuration.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"109 \",\"pages\":\"Pages 66-79\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754624001201\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001201","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

针对压缩机和涡轮机配置,对作用于刚性叶片和反作用于刚性叶片的流动不稳定性进行了实验和数值研究。叶片级联由五个矩形 NACA 0010 叶片组成,中间三个叶片能够利用力激励进行单自由度(俯仰)谐波运动。研究了基本情况(所有叶片固定)和激励机制。测试了各种攻角、谐波频率值、振幅值、叶片间相位角和雷诺数(Re)的影响。使用粒子图像测速仪 (PIV)、雷诺平均纳维-斯托克斯 (RANS) CFD 方法和力测量法研究了平均流动特性以及流体-结构相互作用 (FSI)。此外,还采用了两种不同的方法,即行波模式(TWM)和气动影响系数(AIC)来估算叶片级联的气动弹性稳定性,并对结果进行了比较。结果表明,在压气机和涡轮机配置中,叶片之间都存在明显的气动弹性耦合。然而,在涡轮配置中,扭转扑动的气动耦合效应更为突出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The broad study of blade cascade under controlled torsional flutter: Dynamics of the flow and stability analysis

The experimental and numerical investigation of the flow instabilities acting on rigid blades and vice versa was conducted for both compressor and turbine configuration. The blade cascade consisted of five rectangular NACA 0010 blades, with three middle blades capable of performing harmonic motion with one degree of freedom (pitching) using force excitation. The base case (all blades fixed) and excited regime were examined. The influence of various angles of attack, harmonic frequency values, amplitude values, inter-blade phase angles and Reynolds numbers (Re) were tested. The mean flow properties as well as the fluid - structure interaction (FSI) were studied using Particle Image Velocimetry (PIV), Reynolds-averaged Navier-Stokes (RANS) CFD methods and using force measurement. Additionally, two different approaches, namely traveling wave mode (TWM) and aerodynamic influence coefficient (AIC), were adopted to estimate the aeroelastic stability of the blade cascade, and the results were compared. The results show significant aeroelastic coupling between the blades in both compressor and turbine configuration. However, the aerodynamic coupling effect for torsional flutter is more prominent in turbine configuration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信