Tao Lin , Yang Chen , Hao Yang , Yuan Zhang , Bo Jiang , Jinyao Yan
{"title":"DeCa360:用于双层 360° 视频流的截止日期感知边缘缓存","authors":"Tao Lin , Yang Chen , Hao Yang , Yuan Zhang , Bo Jiang , Jinyao Yan","doi":"10.1016/j.jnca.2024.104022","DOIUrl":null,"url":null,"abstract":"<div><p>Two-tier 360° video streaming provides a robust solution for handling inaccurate viewport prediction and varying network conditions. Within this paradigm, the client employs a dual-buffer mechanism consisting of a long buffer for panoramic basic-quality segments and a short buffer for high-quality tiles. However, designing an efficient edge caching strategy for two-tier 360° videos is non-trivial. First, as basic-quality segments and high-quality tiles possess different delivery deadlines as well as content popularity, ignoring these discrepancies may result in inefficient edge caching. Second, accurately predicting the popularity of 360° videos at a fine granularity of video segments and tiles remains a challenge. To address these issues, we present DeCa360, a deadline-aware edge caching framework for 360° videos. Specifically, we introduce a lightweight runtime cache partitioning approach to achieve a careful balance between improving the cache hit ratio and guaranteeing more on-time delivery of objects. Moreover, we design a content popularity prediction method for two-tier 360° videos that combines a learning-based prediction model with domain knowledge of video streaming, leading to improved prediction accuracy and efficient cache replacement. Extensive experimental evaluations demonstrate that DeCa360 outperforms all baseline algorithms in terms of byte-hit ratio and on-time delivery ratio, making it a promising approach for efficient edge caching of 360° videos.</p></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"232 ","pages":"Article 104022"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeCa360: Deadline-aware edge caching for two-tier 360° video streaming\",\"authors\":\"Tao Lin , Yang Chen , Hao Yang , Yuan Zhang , Bo Jiang , Jinyao Yan\",\"doi\":\"10.1016/j.jnca.2024.104022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-tier 360° video streaming provides a robust solution for handling inaccurate viewport prediction and varying network conditions. Within this paradigm, the client employs a dual-buffer mechanism consisting of a long buffer for panoramic basic-quality segments and a short buffer for high-quality tiles. However, designing an efficient edge caching strategy for two-tier 360° videos is non-trivial. First, as basic-quality segments and high-quality tiles possess different delivery deadlines as well as content popularity, ignoring these discrepancies may result in inefficient edge caching. Second, accurately predicting the popularity of 360° videos at a fine granularity of video segments and tiles remains a challenge. To address these issues, we present DeCa360, a deadline-aware edge caching framework for 360° videos. Specifically, we introduce a lightweight runtime cache partitioning approach to achieve a careful balance between improving the cache hit ratio and guaranteeing more on-time delivery of objects. Moreover, we design a content popularity prediction method for two-tier 360° videos that combines a learning-based prediction model with domain knowledge of video streaming, leading to improved prediction accuracy and efficient cache replacement. Extensive experimental evaluations demonstrate that DeCa360 outperforms all baseline algorithms in terms of byte-hit ratio and on-time delivery ratio, making it a promising approach for efficient edge caching of 360° videos.</p></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"232 \",\"pages\":\"Article 104022\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084804524001991\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524001991","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
DeCa360: Deadline-aware edge caching for two-tier 360° video streaming
Two-tier 360° video streaming provides a robust solution for handling inaccurate viewport prediction and varying network conditions. Within this paradigm, the client employs a dual-buffer mechanism consisting of a long buffer for panoramic basic-quality segments and a short buffer for high-quality tiles. However, designing an efficient edge caching strategy for two-tier 360° videos is non-trivial. First, as basic-quality segments and high-quality tiles possess different delivery deadlines as well as content popularity, ignoring these discrepancies may result in inefficient edge caching. Second, accurately predicting the popularity of 360° videos at a fine granularity of video segments and tiles remains a challenge. To address these issues, we present DeCa360, a deadline-aware edge caching framework for 360° videos. Specifically, we introduce a lightweight runtime cache partitioning approach to achieve a careful balance between improving the cache hit ratio and guaranteeing more on-time delivery of objects. Moreover, we design a content popularity prediction method for two-tier 360° videos that combines a learning-based prediction model with domain knowledge of video streaming, leading to improved prediction accuracy and efficient cache replacement. Extensive experimental evaluations demonstrate that DeCa360 outperforms all baseline algorithms in terms of byte-hit ratio and on-time delivery ratio, making it a promising approach for efficient edge caching of 360° videos.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.