Yudi Dai;Zhiyong Wang;Xiping Lin;Chenglu Wen;Lan Xu;Siqi Shen;Yuexin Ma;Cheng Wang
{"title":"HiSC4D:使用可穿戴式 IMU 和激光雷达在大规模空间进行以人为本的交互和 4D 场景捕捉","authors":"Yudi Dai;Zhiyong Wang;Xiping Lin;Chenglu Wen;Lan Xu;Siqi Shen;Yuexin Ma;Cheng Wang","doi":"10.1109/TPAMI.2024.3457229","DOIUrl":null,"url":null,"abstract":"We introduce HiSC4D, a novel \n<b>H</b>\numan-centered \n<b>i</b>\nnteraction and \n<b>4D</b>\n \n<b>S</b>\ncene \n<b>C</b>\napture method, aimed at accurately and efficiently creating a dynamic digital world, containing large-scale indoor-outdoor scenes, diverse human motions, rich human-human interactions, and human-environment interactions. By utilizing body-mounted IMUs and a head-mounted LiDAR, HiSC4D can capture egocentric human motions in unconstrained space without the need for external devices and pre-built maps. This affords great flexibility and accessibility for human-centered interaction and 4D scene capturing in various environments. Taking into account that IMUs can capture human spatially unrestricted poses but are prone to drifting for long-period using, and while LiDAR is stable for global localization but rough for local positions and orientations, HiSC4D employs a joint optimization method, harmonizing all sensors and utilizing environment cues, yielding promising results for long-term capture in large scenes. To promote research of egocentric human interaction in large scenes and facilitate downstream tasks, we also present a dataset, containing 8 sequences in 4 large scenes (200 to 5,000 \n<inline-formula><tex-math>$\\text{m}^{2}$</tex-math></inline-formula>\n), providing 36 k frames of accurate 4D human motions with SMPL annotations and dynamic scenes, 31k frames of cropped human point clouds, and scene mesh of the environment. A variety of scenarios, such as the basketball gym and commercial street, alongside challenging human motions, such as daily greeting, one-on-one basketball playing, and tour guiding, demonstrate the effectiveness and the generalization ability of HiSC4D. The dataset and code will be publicly available for research purposes.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"46 12","pages":"11236-11253"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HiSC4D: Human-Centered Interaction and 4D Scene Capture in Large-Scale Space Using Wearable IMUs and LiDAR\",\"authors\":\"Yudi Dai;Zhiyong Wang;Xiping Lin;Chenglu Wen;Lan Xu;Siqi Shen;Yuexin Ma;Cheng Wang\",\"doi\":\"10.1109/TPAMI.2024.3457229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce HiSC4D, a novel \\n<b>H</b>\\numan-centered \\n<b>i</b>\\nnteraction and \\n<b>4D</b>\\n \\n<b>S</b>\\ncene \\n<b>C</b>\\napture method, aimed at accurately and efficiently creating a dynamic digital world, containing large-scale indoor-outdoor scenes, diverse human motions, rich human-human interactions, and human-environment interactions. By utilizing body-mounted IMUs and a head-mounted LiDAR, HiSC4D can capture egocentric human motions in unconstrained space without the need for external devices and pre-built maps. This affords great flexibility and accessibility for human-centered interaction and 4D scene capturing in various environments. Taking into account that IMUs can capture human spatially unrestricted poses but are prone to drifting for long-period using, and while LiDAR is stable for global localization but rough for local positions and orientations, HiSC4D employs a joint optimization method, harmonizing all sensors and utilizing environment cues, yielding promising results for long-term capture in large scenes. To promote research of egocentric human interaction in large scenes and facilitate downstream tasks, we also present a dataset, containing 8 sequences in 4 large scenes (200 to 5,000 \\n<inline-formula><tex-math>$\\\\text{m}^{2}$</tex-math></inline-formula>\\n), providing 36 k frames of accurate 4D human motions with SMPL annotations and dynamic scenes, 31k frames of cropped human point clouds, and scene mesh of the environment. A variety of scenarios, such as the basketball gym and commercial street, alongside challenging human motions, such as daily greeting, one-on-one basketball playing, and tour guiding, demonstrate the effectiveness and the generalization ability of HiSC4D. The dataset and code will be publicly available for research purposes.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"46 12\",\"pages\":\"11236-11253\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10670484/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10670484/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HiSC4D: Human-Centered Interaction and 4D Scene Capture in Large-Scale Space Using Wearable IMUs and LiDAR
We introduce HiSC4D, a novel
H
uman-centered
i
nteraction and
4DS
cene
C
apture method, aimed at accurately and efficiently creating a dynamic digital world, containing large-scale indoor-outdoor scenes, diverse human motions, rich human-human interactions, and human-environment interactions. By utilizing body-mounted IMUs and a head-mounted LiDAR, HiSC4D can capture egocentric human motions in unconstrained space without the need for external devices and pre-built maps. This affords great flexibility and accessibility for human-centered interaction and 4D scene capturing in various environments. Taking into account that IMUs can capture human spatially unrestricted poses but are prone to drifting for long-period using, and while LiDAR is stable for global localization but rough for local positions and orientations, HiSC4D employs a joint optimization method, harmonizing all sensors and utilizing environment cues, yielding promising results for long-term capture in large scenes. To promote research of egocentric human interaction in large scenes and facilitate downstream tasks, we also present a dataset, containing 8 sequences in 4 large scenes (200 to 5,000
$\text{m}^{2}$
), providing 36 k frames of accurate 4D human motions with SMPL annotations and dynamic scenes, 31k frames of cropped human point clouds, and scene mesh of the environment. A variety of scenarios, such as the basketball gym and commercial street, alongside challenging human motions, such as daily greeting, one-on-one basketball playing, and tour guiding, demonstrate the effectiveness and the generalization ability of HiSC4D. The dataset and code will be publicly available for research purposes.