均质板模型的双尺度有限元逼近

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Martin Rumpf, Stefan Simon, Christoph Smoch
{"title":"均质板模型的双尺度有限元逼近","authors":"Martin Rumpf, Stefan Simon, Christoph Smoch","doi":"10.1137/23m1596272","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2121-2142, October 2024. <br/> Abstract. This paper studies the discretization of a homogenization and dimension reduction model for the elastic deformation of microstructured thin plates proposed by Hornung, Neukamm, and Velčić [Calc. Var. Partial Differential Equations, 51 (2014), pp. 677–699]. Thereby, a nonlinear bending energy is based on a homogenized quadratic form which acts on the second fundamental form associated with the elastic deformation. Convergence is proved for a multi-affine finite element discretization of the involved three-dimensional microscopic cell problems and a discrete Kirchhoff triangle discretization of the two-dimensional isometry-constrained macroscopic problem. Finally, the convergence properties are numerically verified in selected test cases and qualitatively compared with deformation experiments for microstructured sheets of paper.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"9 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Scale Finite Element Approximation of a Homogenized Plate Model\",\"authors\":\"Martin Rumpf, Stefan Simon, Christoph Smoch\",\"doi\":\"10.1137/23m1596272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2121-2142, October 2024. <br/> Abstract. This paper studies the discretization of a homogenization and dimension reduction model for the elastic deformation of microstructured thin plates proposed by Hornung, Neukamm, and Velčić [Calc. Var. Partial Differential Equations, 51 (2014), pp. 677–699]. Thereby, a nonlinear bending energy is based on a homogenized quadratic form which acts on the second fundamental form associated with the elastic deformation. Convergence is proved for a multi-affine finite element discretization of the involved three-dimensional microscopic cell problems and a discrete Kirchhoff triangle discretization of the two-dimensional isometry-constrained macroscopic problem. Finally, the convergence properties are numerically verified in selected test cases and qualitatively compared with deformation experiments for microstructured sheets of paper.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1596272\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1596272","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 5 期第 2121-2142 页,2024 年 10 月。 摘要本文研究了 Hornung、Neukamm 和 Velčić 提出的微结构薄板弹性变形的均质化和降维模型的离散化[Calc. Var. Partial Differential Equations, 51 (2014), pp.]因此,非线性弯曲能是基于同质化二次方程形式,该形式作用于与弹性变形相关的第二基本形式。对所涉及的三维微观单元问题的多参数有限元离散化和二维等距约束宏观问题的离散基尔霍夫三角形离散化进行了收敛性证明。最后,在选定的测试案例中对收敛特性进行了数值验证,并与微结构纸张的变形实验进行了定性比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Scale Finite Element Approximation of a Homogenized Plate Model
SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2121-2142, October 2024.
Abstract. This paper studies the discretization of a homogenization and dimension reduction model for the elastic deformation of microstructured thin plates proposed by Hornung, Neukamm, and Velčić [Calc. Var. Partial Differential Equations, 51 (2014), pp. 677–699]. Thereby, a nonlinear bending energy is based on a homogenized quadratic form which acts on the second fundamental form associated with the elastic deformation. Convergence is proved for a multi-affine finite element discretization of the involved three-dimensional microscopic cell problems and a discrete Kirchhoff triangle discretization of the two-dimensional isometry-constrained macroscopic problem. Finally, the convergence properties are numerically verified in selected test cases and qualitatively compared with deformation experiments for microstructured sheets of paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信