基于先验知识的嵌入式 U-Net 全自动测量三维超声图像中的颈动脉血管壁容积

Zheng Yue;Jiayao Jiang;Wenguang Hou;Quan Zhou;J. David Spence;Aaron Fenster;Wu Qiu;Mingyue Ding
{"title":"基于先验知识的嵌入式 U-Net 全自动测量三维超声图像中的颈动脉血管壁容积","authors":"Zheng Yue;Jiayao Jiang;Wenguang Hou;Quan Zhou;J. David Spence;Aaron Fenster;Wu Qiu;Mingyue Ding","doi":"10.1109/TMI.2024.3457245","DOIUrl":null,"url":null,"abstract":"The vessel-wall-volume (VWV) measured based on three-dimensional (3D) carotid artery (CA) ultrasound (US) images can help to assess carotid atherosclerosis and manage patients at risk for stroke. Manual involvement for measurement work is subjective and requires well-trained operators, and fully automatic measurement tools are not yet available. Thereby, we proposed a fully automatic VWV measurement framework (Auto-VWV) using a CA prior-knowledge embedded U-Net (CAP-UNet) to measure the VWV from 3D CA US images without manual intervention. The Auto-VWV framework is designed to improve the repeated VWV measuring consistency, which resulted in the first fully automatic framework for VWV measurement. CAP-UNet is developed to improve segmentation accuracy on the whole CA, which composed of a U-Net type backbone and three additional prior-knowledge learning modules. Specifically, a continuity learning module is used to learn the spatial continuity of the arteries in a sequence of image slices. A voxel evolution learning module was designed to learn the evolution of the artery in adjacent slices, and a topology learning module was used to learn the unique topology of the carotid artery. In two 3D CA US datasets, CAP-UNet architecture achieved state-of-the-art performance compared to eight competing models. Furthermore, CAP-UNet-based Auto-VWV achieved better accuracy and consistency than Auto-VWV based on competing models in the simulated repeated measurement. Finally, using 10 pairs of real repeatedly scanned samples, Auto-VWV achieved better VWV measurement reproducibility than intra- and inter-operator manual measurements. The code is available at <uri>https://github.com/Yue9603/Auto-VWV</uri>.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"711-727"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prior-Knowledge Embedded U-Net-Based Fully Automatic Vessel Wall Volume Measurement of the Carotid Artery in 3D Ultrasound Image\",\"authors\":\"Zheng Yue;Jiayao Jiang;Wenguang Hou;Quan Zhou;J. David Spence;Aaron Fenster;Wu Qiu;Mingyue Ding\",\"doi\":\"10.1109/TMI.2024.3457245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vessel-wall-volume (VWV) measured based on three-dimensional (3D) carotid artery (CA) ultrasound (US) images can help to assess carotid atherosclerosis and manage patients at risk for stroke. Manual involvement for measurement work is subjective and requires well-trained operators, and fully automatic measurement tools are not yet available. Thereby, we proposed a fully automatic VWV measurement framework (Auto-VWV) using a CA prior-knowledge embedded U-Net (CAP-UNet) to measure the VWV from 3D CA US images without manual intervention. The Auto-VWV framework is designed to improve the repeated VWV measuring consistency, which resulted in the first fully automatic framework for VWV measurement. CAP-UNet is developed to improve segmentation accuracy on the whole CA, which composed of a U-Net type backbone and three additional prior-knowledge learning modules. Specifically, a continuity learning module is used to learn the spatial continuity of the arteries in a sequence of image slices. A voxel evolution learning module was designed to learn the evolution of the artery in adjacent slices, and a topology learning module was used to learn the unique topology of the carotid artery. In two 3D CA US datasets, CAP-UNet architecture achieved state-of-the-art performance compared to eight competing models. Furthermore, CAP-UNet-based Auto-VWV achieved better accuracy and consistency than Auto-VWV based on competing models in the simulated repeated measurement. Finally, using 10 pairs of real repeatedly scanned samples, Auto-VWV achieved better VWV measurement reproducibility than intra- and inter-operator manual measurements. The code is available at <uri>https://github.com/Yue9603/Auto-VWV</uri>.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 2\",\"pages\":\"711-727\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10672557/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10672557/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prior-Knowledge Embedded U-Net-Based Fully Automatic Vessel Wall Volume Measurement of the Carotid Artery in 3D Ultrasound Image
The vessel-wall-volume (VWV) measured based on three-dimensional (3D) carotid artery (CA) ultrasound (US) images can help to assess carotid atherosclerosis and manage patients at risk for stroke. Manual involvement for measurement work is subjective and requires well-trained operators, and fully automatic measurement tools are not yet available. Thereby, we proposed a fully automatic VWV measurement framework (Auto-VWV) using a CA prior-knowledge embedded U-Net (CAP-UNet) to measure the VWV from 3D CA US images without manual intervention. The Auto-VWV framework is designed to improve the repeated VWV measuring consistency, which resulted in the first fully automatic framework for VWV measurement. CAP-UNet is developed to improve segmentation accuracy on the whole CA, which composed of a U-Net type backbone and three additional prior-knowledge learning modules. Specifically, a continuity learning module is used to learn the spatial continuity of the arteries in a sequence of image slices. A voxel evolution learning module was designed to learn the evolution of the artery in adjacent slices, and a topology learning module was used to learn the unique topology of the carotid artery. In two 3D CA US datasets, CAP-UNet architecture achieved state-of-the-art performance compared to eight competing models. Furthermore, CAP-UNet-based Auto-VWV achieved better accuracy and consistency than Auto-VWV based on competing models in the simulated repeated measurement. Finally, using 10 pairs of real repeatedly scanned samples, Auto-VWV achieved better VWV measurement reproducibility than intra- and inter-operator manual measurements. The code is available at https://github.com/Yue9603/Auto-VWV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信