Aofeng Luo, Yuxing Luo, Hong Liu, Wenchao Du, Xiping Wu, Hu Chen, Hongyu Yang
{"title":"基于变压器的民用航空长期 4D 轨迹预测改进模型","authors":"Aofeng Luo, Yuxing Luo, Hong Liu, Wenchao Du, Xiping Wu, Hu Chen, Hongyu Yang","doi":"10.1049/itr2.12530","DOIUrl":null,"url":null,"abstract":"<p>Four-dimensional trajectory prediction is a crucial component of air traffic management, and its accuracy is closely related to the efficiency and safety of air transportation. Although long short-term memory (LSTM) or its variants have been widely used in recent studies, they may produce unacceptable results in long-term prediction due to the iterative output that accumulates error. To address this issue, a transformer-based long-term trajectory prediction model is proposed here, which utilizes the self-attention mechanism to extract time series features from historical trajectory data. For long-term prediction scenarios, we a trajectory stabilization module is introduced to ensure the stationarity of the time series for better predictability. Additionally, the transformer output strategy is improved to generate the prediction sequence by a single step instead of serial dynamic decoding, thus effectively enhancing the precision and inference speed. The proposed model is validated using real data obtained from China's Southwest Air Traffic Management Bureau. The experimental results demonstrate that this model outperforms the benchmark model. Further ablation experiments and visualizations are performed to analyze the impact of trajectory stabilization and one-step inference strategy.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12530","citationCount":"0","resultStr":"{\"title\":\"An improved transformer-based model for long-term 4D trajectory prediction in civil aviation\",\"authors\":\"Aofeng Luo, Yuxing Luo, Hong Liu, Wenchao Du, Xiping Wu, Hu Chen, Hongyu Yang\",\"doi\":\"10.1049/itr2.12530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Four-dimensional trajectory prediction is a crucial component of air traffic management, and its accuracy is closely related to the efficiency and safety of air transportation. Although long short-term memory (LSTM) or its variants have been widely used in recent studies, they may produce unacceptable results in long-term prediction due to the iterative output that accumulates error. To address this issue, a transformer-based long-term trajectory prediction model is proposed here, which utilizes the self-attention mechanism to extract time series features from historical trajectory data. For long-term prediction scenarios, we a trajectory stabilization module is introduced to ensure the stationarity of the time series for better predictability. Additionally, the transformer output strategy is improved to generate the prediction sequence by a single step instead of serial dynamic decoding, thus effectively enhancing the precision and inference speed. The proposed model is validated using real data obtained from China's Southwest Air Traffic Management Bureau. The experimental results demonstrate that this model outperforms the benchmark model. Further ablation experiments and visualizations are performed to analyze the impact of trajectory stabilization and one-step inference strategy.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12530\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12530\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12530","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An improved transformer-based model for long-term 4D trajectory prediction in civil aviation
Four-dimensional trajectory prediction is a crucial component of air traffic management, and its accuracy is closely related to the efficiency and safety of air transportation. Although long short-term memory (LSTM) or its variants have been widely used in recent studies, they may produce unacceptable results in long-term prediction due to the iterative output that accumulates error. To address this issue, a transformer-based long-term trajectory prediction model is proposed here, which utilizes the self-attention mechanism to extract time series features from historical trajectory data. For long-term prediction scenarios, we a trajectory stabilization module is introduced to ensure the stationarity of the time series for better predictability. Additionally, the transformer output strategy is improved to generate the prediction sequence by a single step instead of serial dynamic decoding, thus effectively enhancing the precision and inference speed. The proposed model is validated using real data obtained from China's Southwest Air Traffic Management Bureau. The experimental results demonstrate that this model outperforms the benchmark model. Further ablation experiments and visualizations are performed to analyze the impact of trajectory stabilization and one-step inference strategy.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf