Victor Hugo de Souza Ragazzi;Alexandre Gomes Caldeira;Patrícia Nogueira Vaz;Felipe Antunes;Leonardo Bonato Felix
{"title":"基于蒙特卡罗模拟的顺序测试策略在听觉稳态反应检测中的比较","authors":"Victor Hugo de Souza Ragazzi;Alexandre Gomes Caldeira;Patrícia Nogueira Vaz;Felipe Antunes;Leonardo Bonato Felix","doi":"10.1109/TLA.2024.10669254","DOIUrl":null,"url":null,"abstract":"It is common to use sequential testing strategies to help reduce the time of automated detection of an auditory steady-state response (ASSR). However, the application of repeated tests leads to an increase of false positive rate. Monte Carlo-based strategies are used to overcome this obstacle. Despite several paper could be found describing such strategies, no comprehensive comparison was found in the literature. The chosen strategies are based on Monte Carlo simulations to calculate critical values and were faithfully replicated for comparison purposes, and then the test application parameters were varied to suggest an optimization. The detection rate and/or the detection speed improved with each implemented strategy, except for the one related to the year 2013, which increased the false positive rate to 15.3%. The other strategies kept the false positive rate under control. The Pareto curves compared the optimizations of the strategies and revealed that the modified 2015 strategy had the performance achieving 5.6% higher than the original parameters. The automated detection of ASSR improved with each implemented strategy, but not all of them kept a controlled false positive rate (2013 and 2015). The 2015 modified strategy had the highest detection rate in the shortest time.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669254","citationCount":"0","resultStr":"{\"title\":\"Comparison of sequential test strategies based on Monte Carlo simulations in the detection of auditory steady-state responses\",\"authors\":\"Victor Hugo de Souza Ragazzi;Alexandre Gomes Caldeira;Patrícia Nogueira Vaz;Felipe Antunes;Leonardo Bonato Felix\",\"doi\":\"10.1109/TLA.2024.10669254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is common to use sequential testing strategies to help reduce the time of automated detection of an auditory steady-state response (ASSR). However, the application of repeated tests leads to an increase of false positive rate. Monte Carlo-based strategies are used to overcome this obstacle. Despite several paper could be found describing such strategies, no comprehensive comparison was found in the literature. The chosen strategies are based on Monte Carlo simulations to calculate critical values and were faithfully replicated for comparison purposes, and then the test application parameters were varied to suggest an optimization. The detection rate and/or the detection speed improved with each implemented strategy, except for the one related to the year 2013, which increased the false positive rate to 15.3%. The other strategies kept the false positive rate under control. The Pareto curves compared the optimizations of the strategies and revealed that the modified 2015 strategy had the performance achieving 5.6% higher than the original parameters. The automated detection of ASSR improved with each implemented strategy, but not all of them kept a controlled false positive rate (2013 and 2015). The 2015 modified strategy had the highest detection rate in the shortest time.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669254\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669254/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669254/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Comparison of sequential test strategies based on Monte Carlo simulations in the detection of auditory steady-state responses
It is common to use sequential testing strategies to help reduce the time of automated detection of an auditory steady-state response (ASSR). However, the application of repeated tests leads to an increase of false positive rate. Monte Carlo-based strategies are used to overcome this obstacle. Despite several paper could be found describing such strategies, no comprehensive comparison was found in the literature. The chosen strategies are based on Monte Carlo simulations to calculate critical values and were faithfully replicated for comparison purposes, and then the test application parameters were varied to suggest an optimization. The detection rate and/or the detection speed improved with each implemented strategy, except for the one related to the year 2013, which increased the false positive rate to 15.3%. The other strategies kept the false positive rate under control. The Pareto curves compared the optimizations of the strategies and revealed that the modified 2015 strategy had the performance achieving 5.6% higher than the original parameters. The automated detection of ASSR improved with each implemented strategy, but not all of them kept a controlled false positive rate (2013 and 2015). The 2015 modified strategy had the highest detection rate in the shortest time.
期刊介绍:
IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.