{"title":"从可转移的情境知识中学习三维人-物互动图,用于建筑监测","authors":"Liuyue Xie, Shreyas Misra, Nischal Suresh, Justin Soza-Soto, Tomotake Furuhata, Kenji Shimada","doi":"10.1016/j.compind.2024.104171","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel framework for detecting 3D human–object interactions (HOI) in construction sites and a toolkit for generating construction-related human–object interaction graphs. Computer vision methods have been adopted for construction site safety surveillance in recent years. The current computer vision methods rely on videos and images, with which safety verification is performed on common-sense knowledge, without considering 3D spatial relationships among the detected instances. We propose a new method to incorporate spatial understanding by directly inferring the interactions from 3D point cloud data. The proposed model is trained on a 3D construction site dataset generated from our crafted simulation toolkit. The model achieves 54.11% mean interaction over union (mIOU) and 72.98% average mean precision(mAP) for the worker–object interaction relationship recognition. The model is also validated on PiGraphs, a benchmarking dataset with 3D human–object interaction types, and compared against other existing 3D interaction detection frameworks. It was observed that it achieves superior performance from the state-of-the-art model, increasing the interaction detection mAP by 17.01%. Besides the 3D interaction model, we also simulate interactions from industrial surveillance footage using MoCap and physical constraints, which will be released to foster future studies in the domain.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"164 ","pages":"Article 104171"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016636152400099X/pdfft?md5=5de4190059c557871f94dcddc09652d4&pid=1-s2.0-S016636152400099X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Learning 3D human–object interaction graphs from transferable context knowledge for construction monitoring\",\"authors\":\"Liuyue Xie, Shreyas Misra, Nischal Suresh, Justin Soza-Soto, Tomotake Furuhata, Kenji Shimada\",\"doi\":\"10.1016/j.compind.2024.104171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel framework for detecting 3D human–object interactions (HOI) in construction sites and a toolkit for generating construction-related human–object interaction graphs. Computer vision methods have been adopted for construction site safety surveillance in recent years. The current computer vision methods rely on videos and images, with which safety verification is performed on common-sense knowledge, without considering 3D spatial relationships among the detected instances. We propose a new method to incorporate spatial understanding by directly inferring the interactions from 3D point cloud data. The proposed model is trained on a 3D construction site dataset generated from our crafted simulation toolkit. The model achieves 54.11% mean interaction over union (mIOU) and 72.98% average mean precision(mAP) for the worker–object interaction relationship recognition. The model is also validated on PiGraphs, a benchmarking dataset with 3D human–object interaction types, and compared against other existing 3D interaction detection frameworks. It was observed that it achieves superior performance from the state-of-the-art model, increasing the interaction detection mAP by 17.01%. Besides the 3D interaction model, we also simulate interactions from industrial surveillance footage using MoCap and physical constraints, which will be released to foster future studies in the domain.</p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"164 \",\"pages\":\"Article 104171\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016636152400099X/pdfft?md5=5de4190059c557871f94dcddc09652d4&pid=1-s2.0-S016636152400099X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016636152400099X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016636152400099X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Learning 3D human–object interaction graphs from transferable context knowledge for construction monitoring
We propose a novel framework for detecting 3D human–object interactions (HOI) in construction sites and a toolkit for generating construction-related human–object interaction graphs. Computer vision methods have been adopted for construction site safety surveillance in recent years. The current computer vision methods rely on videos and images, with which safety verification is performed on common-sense knowledge, without considering 3D spatial relationships among the detected instances. We propose a new method to incorporate spatial understanding by directly inferring the interactions from 3D point cloud data. The proposed model is trained on a 3D construction site dataset generated from our crafted simulation toolkit. The model achieves 54.11% mean interaction over union (mIOU) and 72.98% average mean precision(mAP) for the worker–object interaction relationship recognition. The model is also validated on PiGraphs, a benchmarking dataset with 3D human–object interaction types, and compared against other existing 3D interaction detection frameworks. It was observed that it achieves superior performance from the state-of-the-art model, increasing the interaction detection mAP by 17.01%. Besides the 3D interaction model, we also simulate interactions from industrial surveillance footage using MoCap and physical constraints, which will be released to foster future studies in the domain.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.